Suppr超能文献

金属电极上的离子吸附:基于从头算的模拟研究。

Ion adsorption at a metallic electrode: an ab initio based simulation study.

作者信息

Pounds M, Tazi S, Salanne M, Madden P A

机构信息

School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK.

出版信息

J Phys Condens Matter. 2009 Oct 21;21(42):424109. doi: 10.1088/0953-8984/21/42/424109. Epub 2009 Sep 30.

Abstract

A method for parametrizing, from first principles density functional theory calculations, a model of the interactions between the ions in an ionic liquid and a metallic (electrode) surface is described. The interaction model includes the induction of dipoles on the ions of the liquid by their mutual interaction and the interaction with the electrode surface as well as the polarization of the metal by the ionic charges and dipoles ('image' interactions). The method is used to obtain a suitable interaction model for a system consisting of a LiCl liquid electrolyte and a solid aluminium electrode. The model is then used in simulations of this system for various values of the electrical potential applied to the electrode. The evolution of the liquid structure at the electrochemical interface with applied potential is followed and the capacitance of the electrochemical interface is measured. The electrolyte is found to exhibit a potential-driven phase transition which involves the commensurate ordering of the electrolyte ions with the electrode surface; this leads to a maximum in the differential capacitance as a function of applied potential. Away from the phase transition the capacitance was found to be independent of the applied potential.

摘要

描述了一种从第一性原理密度泛函理论计算出发,对离子液体中的离子与金属(电极)表面之间相互作用模型进行参数化的方法。该相互作用模型包括液体离子通过相互作用在其自身上诱导偶极子以及与电极表面的相互作用,还有离子电荷和偶极子对金属的极化作用(“镜像”相互作用)。该方法用于为包含LiCl液体电解质和固体铝电极的系统获得合适的相互作用模型。然后将该模型用于对该系统进行模拟,针对施加到电极上的各种电势值进行模拟。跟踪电化学界面处液体结构随施加电势的演变,并测量电化学界面的电容。发现电解质表现出电势驱动的相变,该相变涉及电解质离子与电极表面的相称有序排列;这导致微分电容作为施加电势的函数出现最大值。在远离相变的情况下,发现电容与施加的电势无关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验