David Alessio, Tartaglino Ugo, Casalegno Mosè, Raos Guido
Department of Chemistry, Materials and Chemical Engineering, "G. Natta", Politecnico di Milano, Milano 20131, Italy.
Pirelli Tyre S.p.A., 20126 Milano, Italy.
ACS Polym Au. 2021 Oct 8;1(3):175-186. doi: 10.1021/acspolymersau.1c00023. eCollection 2021 Dec 8.
Despite intense investigation, the mechanisms governing the mechanical reinforcement of polymers by dispersed nanoparticles have only been partially clarified. This is especially true for the ultimate properties of the nanocomposites, which depend on their resistance to fracture at large deformations. In this work, we adopt molecular dynamics simulations to investigate the mechanical properties of silica/polybutadiene rubber, using a quasi-atomistic model that allows a meaningful description of bond breaking and fracture over relatively large length scales. The behavior of large nanocomposite models is explored systematically by tuning the cross-linking, grafting densities, and nanoparticle concentration. The simulated stress-strain curves are interpreted by monitoring the breaking of chemical bonds and the formation of voids, up to complete rupture of the systems. We find that some chemical bonds, and particularly the S-S linkages at the rubber-nanoparticle interface, start breaking well before the appearance of macroscopic features of fracture and yield.
尽管进行了深入研究,但关于分散纳米颗粒对聚合物进行机械增强的机制仅得到了部分阐明。对于纳米复合材料的极限性能而言尤其如此,其取决于材料在大变形下的抗断裂能力。在这项工作中,我们采用分子动力学模拟来研究二氧化硅/聚丁二烯橡胶的力学性能,使用一种准原子模型,该模型能够在相对较大的长度尺度上对键断裂和断裂进行有意义的描述。通过调整交联、接枝密度和纳米颗粒浓度,系统地探索了大型纳米复合材料模型的行为。通过监测化学键的断裂和空隙的形成,直至系统完全破裂,对模拟的应力-应变曲线进行了解释。我们发现,一些化学键,特别是橡胶-纳米颗粒界面处的S-S键,在宏观断裂和屈服特征出现之前就开始断裂。