Suppr超能文献

在一个耦合混沌系统中吸引子的强持久性和广义部分同步。

Strong persistence of an attractor and generalized partial synchronization in a coupled chaotic system.

机构信息

LATTIS-Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France.

出版信息

Chaos. 2011 Jun;21(2):023110. doi: 10.1063/1.3540319.

Abstract

It is widely believed that when two discrete time chaotic systems are coupled together then there is a contraction in the phase space (where the essential dynamics takes place) when compared with the phase space in the uncoupled case. Contrary to such a popular belief, we produce a counter example--we consider two discrete time chaotic systems both with an identical attractor A, and show that the two systems could be nonlinearly coupled in a way such that the coupled system's attractor persists strongly, i.e., it is A × A despite the coupling strength is varied from zero to a nonzero value. To show this, we prove robust topological mixing on A × A. Also, it is of interest that the studied coupled system can exhibit a type of synchronization called generalized partial synchronization which is also robust.

摘要

人们普遍认为,当两个离散时间混沌系统耦合在一起时,与未耦合情况下的相空间相比,相空间会发生收缩。与这种普遍观点相反,我们给出了一个反例——我们考虑两个离散时间混沌系统都具有相同的吸引子 A,并表明这两个系统可以以一种非线性的方式耦合,使得耦合系统的吸引子保持不变,即尽管耦合强度从 0 变化到非零值,它仍然是 A×A。为了证明这一点,我们证明了 A×A 上的鲁棒拓扑混合。此外,有趣的是,所研究的耦合系统可以表现出一种称为广义部分同步的同步类型,这种同步也是鲁棒的。

相似文献

4
Topological synchronization of chaotic systems.混沌系统的拓扑同步。
Sci Rep. 2022 Feb 15;12(1):2508. doi: 10.1038/s41598-022-06262-z.
5
Excitation functions of coupling.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):066211. doi: 10.1103/PhysRevE.71.066211. Epub 2005 Jun 22.
7
An approach to chaotic synchronization.一种混沌同步的方法。
Chaos. 2004 Sep;14(3):603-10. doi: 10.1063/1.1775991.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验