Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA.
Chaos. 2011 Jun;21(2):025103. doi: 10.1063/1.3596711.
We consider the dynamics of many phase oscillators that interact through a coupling network. For a given network connectivity we further consider an ensemble of such systems where, for each ensemble member, the set of oscillator natural frequencies is independently and randomly chosen according to a given distribution function. We then seek a statistical description of the dynamics of this ensemble. Use of this approach allows us to apply the recently developed ansatz of Ott and Antonsen [Chaos 18, 037113 (2008)] to the marginal distribution of the ensemble of states at each node. This, in turn, results in a reduced set of ordinary differential equations determining these marginal distribution functions. The new set facilitates the analysis of network dynamics in several ways: (i) the time evolution of the reduced system of ensemble equations is much smoother, and thus numerical solutions can be obtained much faster by use of longer time steps; (ii) the new set of equations can be used as a basis for obtaining analytical results; and (iii) for a certain type of network, a reduction to a low dimensional description of the entire network dynamics is possible. We illustrate our approach with numerical experiments on a network version of the classical Kuramoto problem, first with a unimodal frequency distribution, and then with a bimodal distribution. In the latter case, the network dynamics is characterized by bifurcations and hysteresis involving a variety of steady and periodic attractors.
我们研究了通过耦合网络相互作用的多个相振荡器的动力学。对于给定的网络连通性,我们进一步考虑了这样的系统的集合,其中,对于每个集合成员,振荡器自然频率集根据给定的分布函数独立且随机地选择。然后,我们寻求对这个集合的动力学的统计描述。这种方法的使用允许我们将 Ott 和 Antonsen [Chaos 18, 037113 (2008)]最近开发的假设应用于每个节点状态集合的边际分布。这反过来又导致一组确定这些边际分布函数的简化常微分方程组。新的集合以几种方式促进了网络动力学的分析:(i) 简化系统的集合方程的时间演化要平滑得多,因此通过使用更长的时间步,可以更快地获得数值解;(ii) 新的方程组可作为获得解析结果的基础;(iii) 对于某种类型的网络,可以将整个网络动力学简化为低维描述。我们通过对经典 Kuramoto 问题的网络版本的数值实验来说明我们的方法,首先是具有单峰频率分布的情况,然后是具有双峰分布的情况。在后一种情况下,网络动力学的特点是涉及各种稳态和周期性吸引子的分叉和滞后。