School of Science, Beijing University of Posts and Telecommunications, Beijing, People's Republic of China.
Faculty of Science, Xi'an Aeronautical University, Xi'an, People's Republic of China.
PLoS One. 2020 Dec 9;15(12):e0243196. doi: 10.1371/journal.pone.0243196. eCollection 2020.
In this work, we study the Sakaguchi-Kuramoto model with natural frequency following a bimodal distribution. By using Ott-Antonsen ansatz, we reduce the globally coupled phase oscillators to low dimensional coupled ordinary differential equations. For symmetrical bimodal frequency distribution, we analyze the stabilities of the incoherent state and different partial synchronous states. Different types of bifurcations are identified and the effect of the phase lag on the dynamics is investigated. For asymmetrical bimodal frequency distribution, we observe the revival of the incoherent state, and then the conditions for the revival are specified.
在这项工作中,我们研究了具有双模分布自然频率的Sakaguchi-Kuramoto 模型。通过使用 Ott-Antonsen 假设,我们将全局耦合相振荡器简化为低维耦合常微分方程。对于对称双模频率分布,我们分析了非相干态和不同部分同步态的稳定性。识别出不同类型的分岔,并研究了相位滞后对动力学的影响。对于非对称双模频率分布,我们观察到非相干态的恢复,然后指定恢复的条件。