Institut für Pädagogik, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 75, 24118 Kiel, Germany.
Chaos. 2011 Jun;21(2):025104. doi: 10.1063/1.3597647.
We generalize our recent approach to the reconstruction of phase dynamics of coupled oscillators from data [B. Kralemann et al., Phys. Rev. E 77, 066205 (2008)] to cover the case of small networks of coupled periodic units. Starting from a multivariate time series, we first reconstruct genuine phases and then obtain the coupling functions in terms of these phases. Partial norms of these coupling functions quantify directed coupling between oscillators. We illustrate the method by different network motifs for three coupled oscillators and for random networks of five and nine units. We also discuss nonlinear effects in coupling.
我们将最近的方法从数据中重建耦合振荡器的相位动力学[B. Kralemann 等人,Phys. Rev. E 77, 066205(2008)]推广到包含耦合周期单元的小网络的情况。从多元时间序列开始,我们首先重建真正的相位,然后根据这些相位得到耦合函数。这些耦合函数的部分范数量化了振荡器之间的有向耦合。我们通过三个耦合振荡器的不同网络模式和五个和九个单元的随机网络来说明该方法。我们还讨论了耦合中的非线性效应。