Suppr超能文献

pHi-dependent membrane conductance of proximal tubule cells in culture (OK): differential effects on K(+)- and Na(+)-conductive channels.

作者信息

Schwegler J S, Steigner W, Heuner A, Silbernagl S

机构信息

Physiologisches Institut, Universität Würzburg, Federal Republic of Germany.

出版信息

J Membr Biol. 1990 Sep;117(3):243-51. doi: 10.1007/BF01868454.

Abstract

Confluent monolayers of the established opossum kidney cell line were exposed to NH4Cl pulses (20 mmol/liter) during continuous intracellular measurements of pH, membrane potential (PDm) and membrane resistance (R'm) in bicarbonate-free Ringer. The removal of extracellular NH4Cl leads to an intracellular acidification from a control value of 7.33 +/- 0.08 to 6.47 +/- 0.03 (n = 7). This inhibits the absolute K conductance (gK+), reflected by a decrease of K+ transference number from 71 +/- 3% (n = 28) to 26 +/- 6% (n = 5), a 2.6 +/- 0.2-fold rise of R'm, and a depolarization by 24.2 +/- 1.5 mV (n = 52). In contrast, intracellular acidification during a block of gK+ by 3 mmol/liter BaCl2 enhances the total membrane conductance, being shown by R'm decrease to 68 +/- 7% of control and cell membrane depolarization by 9.8 +/- 2.8 mV (n = 17). Conversely, intracellular alkalinization under barium elevates R'm and hyperpolarizes PDm. The replacement of extracellular sodium by choline in the presence of BaCl2 significantly hyperpolarizes PDm and increases R'm, indicating the presence of a sodium conductance. This conductance is not inhibited by 10(-4) mol/liter amiloride (n = 7). Patch-clamp studies at the apical membrane (excised inside-out configuration) revealed two Na(+)-conductive channels with 18.8 +/- 1.4 pS (n = 10) and 146 pS single-channel conductance. Both channels are inwardly rectifying and highly selective towards Cl-. The low-conductive channel is 4.8 times more permeable for Na+ than for K+. Its open probability rises at depolarizing potentials and is dependent on the pH of the membrane inside (higher at pH 6.5 than at pH 7.8).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验