Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA.
J Mol Biol. 2011 Aug 26;411(4):854-69. doi: 10.1016/j.jmb.2011.06.039. Epub 2011 Jun 25.
Catalysis of sequential reactions is often envisaged to occur by channeling of substrate between enzyme active sites without release into bulk solvent. However, while there are compelling physiological rationales for direct substrate transfer, proper experimental support for the hypothesis is often lacking, particularly for metabolic pathways involving RNA. Here, we apply transient kinetics approaches developed to study channeling in bienzyme complexes to an archaeal protein synthesis pathway featuring the misaminoacylated tRNA intermediate Glu-tRNA(Gln). Experimental and computational elucidation of a kinetic and thermodynamic framework for two-step cognate Gln-tRNA(Gln) synthesis demonstrates that the misacylating aminoacyl-tRNA synthetase (GluRS(ND)) and the tRNA-dependent amidotransferase (GatDE) function sequentially without channeling. Instead, rapid processing of the misacylated tRNA intermediate by GatDE and preferential elongation factor binding to the cognate Gln-tRNA(Gln) together permit accurate protein synthesis without formation of a binary protein-protein complex between GluRS(ND) and GatDE. These findings establish an alternate paradigm for protein quality control via two-step pathways for cognate aminoacyl-tRNA formation.
酶活性位点之间无释放到体相溶剂的底物级联反应的催化常被设想为通过底物在酶活性位点之间的通道化来发生。然而,虽然直接的底物转移具有令人信服的生理合理性,但该假说的适当实验支持往往缺乏,特别是对于涉及 RNA 的代谢途径。在这里,我们将应用开发的双酶复合物中通道化研究的瞬变动力学方法应用于具有错氨酰化 tRNA 中间体 Glu-tRNA(Gln)的古菌蛋白合成途径。两步共氨酰-tRNA(Gln)合成的动力学和热力学框架的实验和计算阐明表明,错误酰化的 tRNA 依赖的氨酰基转移酶 (GluRS(ND)) 和 tRNA 依赖性转酰胺酶 (GatDE) 依次作用而没有通道化。相反,GatDE 对错氨酰化 tRNA 中间物的快速处理以及对共氨酰-tRNA(Gln)的延长因子的优先结合一起允许在不形成 GluRS(ND)和 GatDE 之间的二元蛋白-蛋白复合物的情况下进行准确的蛋白质合成。这些发现为通过两步共氨酰-tRNA 形成途径的蛋白质质量控制建立了替代范例。