Suppr超能文献

二维和三维横向场伊辛模型的实空间重整化群

Real-space renormalization group for the transverse-field Ising model in two and three dimensions.

作者信息

Miyazaki Ryoji, Nishimori Hidetoshi, Ortiz Gerardo

机构信息

Department of Physics, Tokyo Institute of Technology, Megro-ku, Tokyo, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051103. doi: 10.1103/PhysRevE.83.051103. Epub 2011 May 2.

Abstract

The two- and three-dimensional transverse-field Ising models with ferromagnetic exchange interactions are analyzed by means of the real-space renormalization-group method. The basic strategy is a generalization of a method developed for the one-dimensional case, which exploits the exact invariance of the model under renormalization and is known to give the exact values of the critical point and critical exponent ν. The resulting values of the critical exponent ν in two and three dimensions are in good agreement with those for the classical Ising model in three and four dimensions. To the best of our knowledge, this is the first example in which a real-space renormalization group on (2+1)- and (3+1)-dimensional Bravais lattices yields accurate estimates of the critical exponents.

摘要

利用实空间重整化群方法分析了具有铁磁交换相互作用的二维和三维横向场伊辛模型。基本策略是对为一维情况开发的方法进行推广,该方法利用了重整化下模型的精确不变性,并且已知能给出临界点和临界指数ν的精确值。二维和三维中临界指数ν的所得值与三维和四维经典伊辛模型的结果吻合良好。据我们所知,这是第一个在(2 + 1)维和(3 + 1)维布拉维晶格上的实空间重整化群能准确估计临界指数的例子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验