Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA.
Phys Rev Lett. 2011 Nov 4;107(19):195701. doi: 10.1103/PhysRevLett.107.195701.
Network research has been focused on studying the properties of a single isolated network, which rarely exists. We develop a general analytical framework for studying percolation of n interdependent networks. We illustrate our analytical solutions for three examples: (i) For any tree of n fully dependent Erdős-Rényi (ER) networks, each of average degree k, we find that the giant component is P∞ =p1-exp(-kP∞) where 1-p is the initial fraction of removed nodes. This general result coincides for n = 1 with the known second-order phase transition for a single network. For any n>1 cascading failures occur and the percolation becomes an abrupt first-order transition. (ii) For a starlike network of n partially interdependent ER networks, P∞ depends also on the topology-in contrast to case (i). (iii) For a looplike network formed by n partially dependent ER networks, P∞ is independent of n.
网络研究一直集中在研究单个孤立网络的特性,而这种网络很少存在。我们开发了一个用于研究 n 个相互依存网络的渗透的通用分析框架。我们通过三个例子来说明我们的分析解:(i)对于任何一棵树的 n 个完全依赖的 Erdős-Rényi(ER)网络,每个网络的平均度数为 k,我们发现巨团的大小 P∞ = p1-exp(-kP∞),其中 1-p 是初始被删除节点的分数。这个普遍的结果对于 n=1 与单个网络的已知二阶相变相吻合。对于任何 n>1,级联故障都会发生,而渗透成为突然的一阶相变。(ii)对于 n 个部分相互依存的 ER 网络的星形网络,P∞也取决于拓扑——与情况(i)不同。(iii)对于由 n 个部分相互依存的 ER 网络形成的环形网络,P∞与 n 无关。