Benet Luis, Hernández-Quiroz Saúl, Seligman Thomas H
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056216. doi: 10.1103/PhysRevE.83.056216. Epub 2011 May 31.
We study the fidelity decay in the k-body embedded ensembles of random matrices for bosons distributed in two single-particle states, considering the reference or unperturbed Hamiltonian as the one-body terms and the diagonal part of the k-body embedded ensemble of random matrices and the perturbation as the residual off-diagonal part of the interaction. We calculate the ensemble-averaged fidelity with respect to an initial random state within linear response theory to second order on the perturbation strength and demonstrate that it displays the freeze of the fidelity. During the freeze, the average fidelity exhibits periodic revivals at integer values of the Heisenberg time t(H). By selecting specific k-body terms of the residual interaction, we find that the periodicity of the revivals during the freeze of fidelity is an integer fraction of t(H), thus relating the period of the revivals with the range of the interaction k of the perturbing terms. Numerical calculations confirm the analytical results.
我们研究了分布在两个单粒子态的玻色子的随机矩阵的k体嵌入系综中的保真度衰减,将参考哈密顿量或未微扰哈密顿量视为一体项,将随机矩阵的k体嵌入系综的对角部分和微扰视为相互作用的剩余非对角部分。我们在线性响应理论中计算了相对于初始随机态的系综平均保真度,精确到微扰强度的二阶,并证明它表现出保真度的冻结。在冻结期间,平均保真度在海森堡时间t(H)的整数值处呈现周期性复苏。通过选择剩余相互作用的特定k体项,我们发现保真度冻结期间复苏的周期性是t(H)的整数分之一,从而将复苏周期与微扰项相互作用k的范围联系起来。数值计算证实了分析结果。