Eyink Gregory L
Department of Applied Mathematics & Statistics, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056405. doi: 10.1103/PhysRevE.83.056405. Epub 2011 May 27.
Magnetic flux conservation in turbulent plasmas at high magnetic Reynolds numbers is argued neither to hold in the conventional sense nor to be entirely broken, but instead to be valid in a statistical sense associated to the "spontaneous stochasticity" of Lagrangian particle trajectories. The latter phenomenon is due to the explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of Laplacian determinism for classical dynamics. Empirical evidence is presented for spontaneous stochasticity, including numerical results. A Lagrangian path-integral approach is then exploited to establish stochastic flux freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion, that flux conservation must remain stochastic at infinite magnetic Reynolds number. An important application of these results is the kinematic, fluctuation dynamo in nonhelical, incompressible turbulence at magnetic Prandtl number (Pr(m)) equal to unity. Numerical results on the Lagrangian dynamo mechanisms by a stochastic particle method demonstrate a strong similarity between the Pr(m)=1 and 0 dynamos. Stochasticity of field-line motion is an essential ingredient of both. Finally, some consequences for nonlinear magnetohydrodynamic turbulence, dynamo, and reconnection are briefly considered.
在高磁雷诺数的湍流等离子体中,磁通量守恒既不是以传统意义成立,也不是完全被打破,而是在与拉格朗日粒子轨迹的“自发随机性”相关的统计意义上成立。后一种现象是由于经历湍流理查森扩散的粒子的爆炸性分离,这导致了经典动力学中拉普拉斯确定性的崩溃。给出了包括数值结果在内的自发随机性的经验证据。然后利用拉格朗日路径积分方法为电阻性磁流体动力学方程建立随机通量冻结,并基于理查森扩散的性质论证,在无限磁雷诺数下通量守恒必然保持随机。这些结果的一个重要应用是在磁普朗特数(Pr(m))等于1的非螺旋、不可压缩湍流中的运动学、涨落发电机。通过随机粒子方法对拉格朗日发电机机制的数值结果表明,Pr(m)=1和0的发电机之间有很强的相似性。磁力线运动的随机性是两者的一个基本要素。最后,简要考虑了对非线性磁流体动力学湍流、发电机和重联的一些影响。