Department of Mechanical Engineering, University of California, Santa Barbara, Engineering II Bldg,, Santa Barbara, CA 93106-5070, USA.
BMC Bioinformatics. 2011 Jul 5;12:276. doi: 10.1186/1471-2105-12-276.
Activation of the NF-κB transcription factor and its associated gene expression in microglia is a key component in the response to brain injury. Its activation is dynamic and is part of a network of biochemical species with multiple feedback regulatory mechanisms. Mathematical modeling, which has been instrumental for understanding the NF-κB response in other cell types, offers a valuable tool to investigate the regulation of NF-κB activation in microglia at a systems level.
We quantify the dynamic response of NF-κB activation and activation of the upstream kinase IKK using ELISA measurements of a microglial cell line following treatment with the pro-inflammatory cytokine TNFα. A new mathematical model is developed based on these data sets using a modular procedure that exploits the feedback structure of the network. We show that the new model requires previously unmodeled dynamics involved in the stimulus-induced degradation of the inhibitor IκBα in order to properly describe microglial NF-κB activation in a statistically consistent manner. This suggests a more prominent role for the ubiquitin-proteasome system in regulating the activation of NF-κB to inflammatory stimuli. We also find that the introduction of nonlinearities in the kinetics of IKK activation and inactivation is essential for proper characterization of transient IKK activity and corresponds to known biological mechanisms. Numerical analyses of the model highlight key regulators of the microglial NF-κB response, as well as those governing IKK activation. Results illustrate the dynamic regulatory mechanisms and the robust yet fragile nature of the negative feedback regulated network.
We have developed a new mathematical model that incorporates previously unmodeled dynamics to characterize the dynamic response of the NF-κB signaling network in microglia. This model is the first of its kind for microglia and provides a tool for the quantitative, systems level study the dynamic cellular response to inflammatory stimuli.
NF-κB 转录因子及其相关基因在小胶质细胞中的表达激活是对脑损伤反应的关键组成部分。其激活是动态的,是具有多种反馈调节机制的生化物质网络的一部分。数学建模对于理解其他细胞类型中的 NF-κB 反应非常重要,它为在系统水平上研究小胶质细胞中 NF-κB 激活的调节提供了有价值的工具。
我们使用 ELISA 测量法量化了 NF-κB 激活和上游激酶 IKK 的激活的动态反应,方法是用促炎细胞因子 TNFα 处理小胶质细胞系。我们使用基于模块化程序的新数据开发了一个新的数学模型,该程序利用了网络的反馈结构。我们表明,新模型需要以前未建模的动力学,这些动力学涉及刺激诱导的抑制剂 IκBα 降解,以便以统计一致的方式正确描述小胶质细胞 NF-κB 的激活。这表明泛素-蛋白酶体系统在调节 NF-κB 对炎症刺激的激活方面发挥着更为突出的作用。我们还发现,IKK 激活和失活动力学中的非线性的引入对于正确描述瞬时 IKK 活性是必不可少的,并且与已知的生物学机制相对应。模型的数值分析突出了小胶质细胞 NF-κB 反应的关键调节剂,以及那些控制 IKK 激活的调节剂。结果说明了动态调节机制以及负反馈调节网络的稳健而脆弱的性质。
我们开发了一种新的数学模型,该模型包含以前未建模的动力学,用于描述小胶质细胞中 NF-κB 信号网络的动态反应。该模型是此类模型中的第一个,为定量、系统水平研究对炎症刺激的动态细胞反应提供了工具。