Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, CA 93106, USA.
Q Rev Biophys. 2011 Nov;44(4):391-432. doi: 10.1017/S0033583511000047. Epub 2011 Jul 1.
Traditional particle-based simulation strategies are impractical for the study of lipid bilayers and biological membranes over the longest length and time scales (microns, seconds and longer) relevant to cellular biology. Continuum-based models developed within the frameworks of elasticity theory, fluid dynamics and statistical mechanics provide a framework for studying membrane biophysics over a range of mesoscopic to macroscopic length and time regimes, but the application of such ideas to simulation studies has occurred only relatively recently. We review some of our efforts in this direction with emphasis on the dynamics in model membrane systems. Several examples are presented that highlight the prominent role of hydrodynamics in membrane dynamics and we argue that careful consideration of fluid dynamics is key to understanding membrane biophysics at the cellular scale.
传统的基于粒子的模拟策略对于研究脂质双层和生物膜在与细胞生物学相关的最长长度和时间尺度(微米、秒和更长时间)下是不切实际的。基于弹性理论、流体动力学和统计力学框架开发的连续体模型为研究介观到宏观长度和时间范围内的膜生物物理学提供了一个框架,但直到最近才将这些想法应用于模拟研究。我们回顾了我们在这方面的一些努力,重点介绍了模型膜系统中的动力学。我们提出了几个例子,强调了流体动力学在膜动力学中的突出作用,并认为仔细考虑流体动力学是理解细胞尺度下膜生物物理学的关键。