Lachos Victor H, Bandyopadhyay Dipankar, Garay Aldo M
Departamento de Estatística, Universidade Estatual de Campinas, Brazil.
Stat Probab Lett. 2011 Aug 1;81(8):1208-1217. doi: 10.1016/j.spl.2011.03.019.
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. We derive a simple EM-type algorithm for iteratively computing maximum likelihood (ML) estimates and the observed information matrix is derived analytically. Simulation studies demonstrate the robustness of this flexible class against outlying and influential observations, as well as nice asymptotic properties of the proposed EM-type ML estimates. Finally, the methodology is illustrated using an ultrasonic calibration data.
将一些基于标准似然的程序扩展到偏态正态分布混合(SMSN)下的异方差非线性回归模型。我们推导了一种简单的EM型算法,用于迭代计算最大似然(ML)估计值,并通过解析得出观测信息矩阵。模拟研究表明,这一灵活类别对异常值和有影响的观测具有稳健性,以及所提出的EM型ML估计具有良好的渐近性质。最后,使用超声校准数据对该方法进行了说明。