Division of Biostatistics, University of Texas School of Public Health, 1200 Pressler St, Houston, Texas 77030, U.S.A.
Stat Med. 2013 Sep 30;32(22):3812-28. doi: 10.1002/sim.5778. Epub 2013 Mar 11.
Many randomized clinical trials collect multivariate longitudinal measurements in different scales, for example, binary, ordinal, and continuous. Multilevel item response models are used to evaluate the global treatment effects across multiple outcomes while accounting for all sources of correlation. Continuous measurements are often assumed to be normally distributed. But the model inference is not robust when the normality assumption is violated because of heavy tails and outliers. In this article, we develop a Bayesian method for multilevel item response models replacing the normal distributions with symmetric heavy-tailed normal/independent distributions. The inference is conducted using a Bayesian framework via Markov Chain Monte Carlo simulation implemented in BUGS language. Our proposed method is evaluated by simulation studies and is applied to Earlier versus Later Levodopa Therapy in Parkinson's Disease study, a motivating clinical trial assessing the effect of Levodopa therapy on the Parkinson's disease progression rate.
许多随机临床试验以不同的尺度收集多变量纵向测量数据,例如二分类、有序和连续。多水平项目反应模型用于评估多个结果的整体治疗效果,同时考虑所有相关来源。通常假设连续测量值服从正态分布。但是,当由于重尾和异常值而违反正态性假设时,模型推断就会变得不稳定。在本文中,我们开发了一种贝叶斯方法,用于多水平项目反应模型,将正态分布替换为对称重尾正态/独立分布。通过贝叶斯框架进行推断,通过 BUGS 语言实现的马尔可夫链蒙特卡罗模拟进行。我们的方法通过模拟研究进行评估,并应用于帕金森病的早期与晚期左旋多巴治疗研究,这是一项评估左旋多巴治疗对帕金森病进展速度影响的激励性临床试验。