Department of Biochemistry, Shivaji University, Kolhapur 416 004, MS, India.
Cell Biochem Biophys. 2011 Dec;61(3):507-21. doi: 10.1007/s12013-011-9233-1.
Conformational preferences of the modified nucleosides N(2)-methylguanosine (m(2)G) and N(2), N(2)-dimethylguanosine (m(2)(2)G) have been studied theoretically by using quantum chemical perturbative configuration interaction with localized orbitals (PCILO) method. Automated complete geometry optimization using semiempirical quantum chemical RM1, along with ab initio molecular orbital Hartree-Fock (HF-SCF), and density functional theory (DFT) calculations has also been made to compare the salient features. Single-point energy calculation studies have been made on various models of m(2)G26:C/A/U44 and m(2)(2)G26:C/A/U44. The glycosyl torsion angle prefers "syn" (χ = 286°) conformation for m(2)G and m(2)(2)G molecules. These conformations are stabilized by N(3)-HC2' and N(3)-HC3' by replacing weak interaction between O5'-HC(8). The N(2)-methyl substituent of (m(2)G26) prefers "proximal" or s-trans conformation. It may also prefer "distal" or s-cis conformation that allows base pairing with A/U44 instead of C at the hinge region. Thus, N(2)-methyl group of m(2)G may have energetically two stable s-trans m(2)G:C/A/U or s-cis m(2)G:A/U rotamers. This could be because of free rotations around C-N bond. Similarly, N(2), N(2)-dimethyl substituent of (m(2)(2)G) prefers "distal" conformation that may allow base pairing with A/U instead of C at 44th position. Such orientations of m(2)G and m(2)(2)G could play an important role in base-stacking interactions at the hinge region of tRNA during protein biosynthesis process.
经理论研究,采用量子化学微扰组态相互作用与局域轨道(PCILO)方法,研究了修饰核苷 N(2)-甲基鸟嘌呤(m(2)G)和 N(2),N(2)-二甲基鸟嘌呤(m(2)(2)G)的构象偏好。还使用半经验量子化学 RM1 进行了自动完全几何优化,同时进行了从头算分子轨道 Hartree-Fock(HF-SCF)和密度泛函理论(DFT)计算,以比较突出特征。对 m(2)G26:C/A/U44 和 m(2)(2)G26:C/A/U44 的各种模型进行了单点能计算研究。对于 m(2)G 和 m(2)(2)G 分子,糖苷扭转角偏向“顺式”(χ=286°)构象。这些构象通过 N(3)-HC2'和 N(3)-HC3'稳定,取代了 O5'-HC(8)之间的弱相互作用。(m(2)G26)中的 N(2)-甲基取代基倾向于“近端”或 s-反式构象。它也可能倾向于“远端”或 s-顺式构象,允许与 A/U44 而不是 C 在铰链区域形成碱基对。因此,m(2)G 的 N(2)-甲基基团可能具有两个稳定的 s-反式 m(2)G:C/A/U 或 s-顺式 m(2)G:A/U 旋转异构体。这可能是由于 C-N 键的自由旋转。类似地,(m(2)(2)G)中的 N(2),N(2)-二甲基取代基倾向于“远端”构象,这可能允许在 44 位与 A/U 而不是 C 形成碱基对。m(2)G 和 m(2)(2)G 的这种取向可能在蛋白质生物合成过程中 tRNA 铰链区域的碱基堆积相互作用中发挥重要作用。