Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa.
Biochemistry. 2011 Aug 16;50(32):7067-75. doi: 10.1021/bi2006509. Epub 2011 Jul 21.
The canonical glutathione transferase (GST) fold found in many monomeric and dimeric proteins consists of two domains that differ in structure and conformational dynamics. However, no evidence exists that the two domains unfold/fold independently at equilibrium, indicating the significance of interdomain interactions in governing cooperativity between domains. Bioinformatics analyses indicate the interdomain interface of the GST fold is large, predominantly hydrophobic with a high packing density explaining cooperative interdomain behavior. Structural alignments reveal a topologically conserved lock-and-key interaction across the domain interface in which a bulky hydrophobic residue ("key") protrudes from the surface of the N-domain and inserts into a pocket ("lock") in the C-domain. To better understand the molecular basis for the contribution of interdomain interactions toward cooperativity within the GST fold in the absence of any influence from quaternary interactions, studies were done with two monomeric GST proteins: Escherichia coli Grx2 (EcGrx2) and human CLIC1 (hCLIC1). Replacing the methionine "key" residue with alanine is structurally nondisruptive, whereas it significantly diminishes the folding cooperativity of both proteins. The loss in cooperativity between domains in the mutants is reflected by a change in the equilibrium folding mechanism from a wild-type two-state process to a three-state process, populating a stable folding intermediate.
经典的谷胱甘肽转移酶 (GST) 折叠结构存在于许多单体和二聚体蛋白质中,由两个结构和构象动力学不同的结构域组成。然而,没有证据表明两个结构域在平衡时独立展开/折叠,这表明结构域间相互作用在调节结构域间的协同作用方面具有重要意义。生物信息学分析表明,GST 折叠的结构域间界面较大,主要是疏水性的,具有较高的堆积密度,这解释了结构域间的协同行为。结构比对揭示了在整个结构域界面上存在拓扑保守的锁钥相互作用,其中一个大的疏水性残基(“键”)从 N 结构域表面突出并插入 C 结构域中的一个口袋(“锁”)。为了更好地理解 GST 折叠中结构域间相互作用对协同作用的分子基础,而不受四级相互作用的任何影响,对两种单体 GST 蛋白进行了研究:大肠杆菌 Grx2(EcGrx2)和人 CLIC1(hCLIC1)。用丙氨酸取代甲硫氨酸“键”残基在结构上没有破坏性,而显著降低了这两种蛋白质的折叠协同性。突变体中结构域间协同性的丧失反映在平衡折叠机制从野生型的两态过程变为三态过程,从而形成稳定的折叠中间态。