Suppr超能文献

与谷胱甘肽磺酸盐复合的大肠杆菌谷胱甘肽S-转移酶的三维结构:Cys10和His106的催化作用

Three-dimensional structure of Escherichia coli glutathione S-transferase complexed with glutathione sulfonate: catalytic roles of Cys10 and His106.

作者信息

Nishida M, Harada S, Noguchi S, Satow Y, Inoue H, Takahashi K

机构信息

Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Tokyo, Bunkyo-ku, 113-0033, Japan.

出版信息

J Mol Biol. 1998 Aug 7;281(1):135-47. doi: 10.1006/jmbi.1998.1927.

Abstract

Cytosolic glutathione S-transferase is a family of multi-functional enzymes involved in the detoxification of a large variety of xenobiotic and endobiotic compounds through glutathione conjugation. The three-dimensional structure of Escherichia coli glutathione S-transferase complexed with glutathione sulfonate, N-(N-L-gamma-glutamyl-3-sulfo-L-alanyl)-glycine, has been determined by the multiple isomorphous replacement method and refined to a crystallographic R factor of 0.183 at 2.1 A resolution. The E. coli enzyme is a globular homodimer with dimensions of 58 Ax56 Ax52 A. Each subunit, consisting of a polypeptide of 201 amino acid residues, is divided into a smaller N-terminal domain (residues 1 to 80) and a larger C-terminal one (residues 89 to 201). The core of the N-terminal domain is constructed by a four-stranded beta-sheet and two alpha-helices, and that of the C-terminal one is constructed by a right-handed bundle of four alpha-helices. Glutathione sulfonate, a competitive inhibitor against glutathione, is bound in a cleft between the N and C-terminal domains. Therefore, the E. coli enzyme conserves overall constructions common to the eukaryotic enzymes, in its polypeptide fold, dimeric assembly, and glutathione-binding site. In the case of the eukaryotic enzymes, tyrosine and serine residues near the N terminus are located in the proximity of the sulfur atom of the bound glutathione, and are proposed to be catalytically essential. In the E. coli enzyme, Tyr5 and Ser11 corresponding to these residues are not involved in the interaction with the inhibitor, although they are located in the vicinity of catalytic site. Instead, Cys10 N and His106 Nepsilon2 atoms are hydrogen-bonded to the sulfonate group of the inhibitor. On the basis of this structural study, Cys10 and His106 are ascribed to the catalytic residues that are distinctive from the family of the eukaryotic enzymes. We propose that glutathione S-transferases have diverged from a common origin and acquired different catalytic apparatuses in the process of evolution.

摘要

胞质谷胱甘肽S-转移酶是一类多功能酶,通过谷胱甘肽结合参与多种外源性和内源性化合物的解毒过程。大肠杆菌谷胱甘肽S-转移酶与谷胱甘肽磺酸盐(N-(N-L-γ-谷氨酰基-3-磺基-L-丙氨酰基)-甘氨酸)形成的复合物的三维结构已通过多重同晶置换法确定,并在2.1 Å分辨率下精修至晶体学R因子为0.183。大肠杆菌酶是一种球状同二聚体,尺寸为58 Å×56 Å×52 Å。每个亚基由201个氨基酸残基的多肽组成,分为较小的N端结构域(残基1至80)和较大的C端结构域(残基89至201)。N端结构域的核心由一个四链β-折叠和两个α-螺旋构成,C端结构域的核心由一个右手四螺旋束构成。谷胱甘肽磺酸盐是谷胱甘肽的竞争性抑制剂,结合在N端和C端结构域之间的裂隙中。因此,大肠杆菌酶在其多肽折叠、二聚体组装和谷胱甘肽结合位点方面保留了真核酶共有的整体结构。对于真核酶而言,N端附近的酪氨酸和丝氨酸残基位于结合的谷胱甘肽硫原子附近,并被认为是催化必需的。在大肠杆菌酶中,与这些残基对应的Tyr5和Ser11虽然位于催化位点附近,但不参与与抑制剂的相互作用。相反,Cys10的N原子和His106的Nε2原子与抑制剂的磺酸盐基团形成氢键。基于这项结构研究,Cys10和His106被归为与真核酶家族不同的催化残基。我们提出谷胱甘肽S-转移酶起源于共同祖先,并在进化过程中获得了不同的催化机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验