Hampson N B, Camporesi E M, Stolp B W, Moon R E, Shook J E, Griebel J A, Piantadosi C A
Department of Medicine, Duke University Medical Center, Durham, North Carolina.
J Appl Physiol (1985). 1990 Sep;69(3):907-13. doi: 10.1152/jappl.1990.69.3.907.
The effects of mild hypoxia on brain oxyhemoglobin, cytochrome a,a3 redox status, and cerebral blood volume were studied using near-infrared spectroscopy in eight healthy volunteers. Incremental hypoxia reaching 70% arterial O2 saturation was produced in normocapnia [end-tidal PCO2 (PETCO2) 36.9 +/- 2.6 to 34.9 +/- 3.4 Torr] or hypocapnia (PETCO2 32.8 +/- 0.6 to 23.7 +/- 0.6 Torr) by an 8-min rebreathing technique and regulation of inspired CO2. Normocapnic hypoxia was characterized by progressive reductions in arterial PO2 (PaO2, 89.1 +/- 3.5 to 34.1 +/- 0.1 Torr) with stable PETCO2, arterial PCO2 (PaCO2), and arterial pH and resulted in increases in heart rate (35%) systolic blood pressure (14%), and minute ventilation (5-fold). Hypocapnic hypoxia resulted in progressively decreasing PaO2 (100.2 +/- 3.6 to 28.9 +/- 0.1 Torr), with progressive reduction in PaCO2 (39.0 +/- 1.6 to 27.3 +/- 1.9 Torr), and an increase in arterial pH (7.41 +/- 0.02 to 7.53 +/- 0.03), heart rate (61%), and ventilation (3-fold). In the brain, hypoxia resulted in a steady decline of cerebral oxyhemoglobin content and a decrease in oxidized cytochrome a,a3. Significantly greater loss of oxidized cytochrome a,a3 occurred for a given decrease in oxyhemoglobin during hypocapnic hypoxia relative to normocapnic hypoxia. Total blood volume response during hypoxia also was significantly attenuated by hypocapnia, because the increase in volume was only half that of normocapnic subjects. We conclude that cytochrome a,a3 oxidation level in vivo decreases at mild levels of hypoxia. PaCO is an important determinant of brain oxygenation, because it modulates ventilatory, cardiovascular, and cerebral O2 delivery responses to hypoxia.
在8名健康志愿者中,采用近红外光谱法研究了轻度低氧对脑氧合血红蛋白、细胞色素a,a3氧化还原状态和脑血容量的影响。通过8分钟的重复呼吸技术和吸入二氧化碳的调节,在正常碳酸血症(呼气末二氧化碳分压(PETCO2)36.9±2.6至34.9±3.4托)或低碳酸血症(PETCO2 32.8±0.6至23.7±0.6托)下产生逐渐加重的低氧,直至动脉血氧饱和度达到70%。正常碳酸血症性低氧的特征是动脉血氧分压(PaO2,89.1±3.5至34.1±0.1托)逐渐降低,而PETCO2、动脉血二氧化碳分压(PaCO2)和动脉血pH值保持稳定,并导致心率增加(35%)、收缩压升高(14%)和分钟通气量增加(5倍)。低碳酸血症性低氧导致PaO2逐渐降低(100.2±3.6至28.9±0.1托),PaCO2逐渐降低(39.0±1.6至27.3±1.9托),动脉血pH值升高(7.41±0.02至7.53±0.03),心率增加(61%)和通气量增加(3倍)。在大脑中,低氧导致脑氧合血红蛋白含量稳步下降,氧化型细胞色素a,a3减少。相对于正常碳酸血症性低氧,在低碳酸血症性低氧期间,对于给定的氧合血红蛋白减少量,氧化型细胞色素a,a3的损失明显更大。低碳酸血症也显著减弱了低氧期间的总血容量反应,因为血容量的增加仅为正常碳酸血症受试者的一半。我们得出结论,在轻度低氧水平下,体内细胞色素a,a3的氧化水平会降低。PaCO是脑氧合的一个重要决定因素,因为它调节对低氧的通气、心血管和脑氧输送反应。