Suppr超能文献

膜电位在盘基网柄菌细胞电趋性和趋化性中的不同作用。

Different roles of membrane potentials in electrotaxis and chemotaxis of dictyostelium cells.

作者信息

Gao Run-Chi, Zhang Xiao-Dong, Sun Yao-Hui, Kamimura Yoichiro, Mogilner Alex, Devreotes Peter N, Zhao Min

机构信息

University of California, 2921 Stockton Blvd., Sacramento, CA 95817, USA.

出版信息

Eukaryot Cell. 2011 Sep;10(9):1251-6. doi: 10.1128/EC.05066-11. Epub 2011 Jul 8.

Abstract

Many types of cells migrate directionally in direct current (DC) electric fields (EFs), a phenomenon termed galvanotaxis or electrotaxis. The directional sensing mechanisms responsible for this response to EFs, however, remain unknown. Exposing cells to an EF causes changes in plasma membrane potentials (V(m)). Exploiting the ability of Dictyostelium cells to tolerate drastic V(m) changes, we investigated the role of V(m) in electrotaxis and, in parallel, in chemotaxis. We used three independent factors to control V(m): extracellular pH, extracellular [K(+)], and electroporation. Changes in V(m) were monitored with microelectrode recording techniques. Depolarized V(m) was observed under acidic (pH 5.0) and alkaline (pH 9.0) conditions as well as under higher extracellular [K(+)] conditions. Electroporation permeabilized the cell membrane and significantly reduced the V(m), which gradually recovered over 40 min. We then recorded the electrotactic behaviors of Dictyostelium cells with a defined V(m) using these three techniques. The directionality (directedness of electrotaxis) was quantified and compared to that of chemotaxis (chemotactic index). We found that a reduced V(m) significantly impaired electrotaxis without significantly affecting random motility or chemotaxis. We conclude that extracellular pH, [K(+)], and electroporation all significantly affected electrotaxis, which appeared to be mediated by the changes in V(m). The initial directional sensing mechanisms for electrotaxis therefore differ from those of chemotaxis and may be mediated by changes in resting V(m).

摘要

许多类型的细胞在直流(DC)电场(EFs)中定向迁移,这种现象被称为趋电性或电趋性。然而,负责这种对电场反应的定向传感机制仍然未知。将细胞暴露于电场会导致质膜电位(V(m))发生变化。利用盘基网柄菌细胞耐受剧烈V(m)变化的能力,我们研究了V(m)在电趋性中的作用,同时也研究了其在趋化性中的作用。我们使用三个独立因素来控制V(m):细胞外pH值、细胞外[K(+)]和电穿孔。通过微电极记录技术监测V(m)的变化。在酸性(pH 5.0)和碱性(pH 9.0)条件下以及在较高细胞外[K(+)]条件下观察到V(m)去极化。电穿孔使细胞膜通透化并显著降低V(m),V(m)在40分钟内逐渐恢复。然后,我们使用这三种技术记录了具有特定V(m)的盘基网柄菌细胞的电趋性行为。对方向性(电趋性的定向性)进行了量化,并与趋化性(趋化指数)进行了比较。我们发现,降低的V(m)显著损害电趋性,而对随机运动或趋化性没有显著影响。我们得出结论,细胞外pH值、[K(+)]和电穿孔都显著影响电趋性,这似乎是由V(m)的变化介导的。因此,电趋性的初始定向传感机制与趋化性不同,可能由静息V(m)的变化介导。

相似文献

1
Different roles of membrane potentials in electrotaxis and chemotaxis of dictyostelium cells.
Eukaryot Cell. 2011 Sep;10(9):1251-6. doi: 10.1128/EC.05066-11. Epub 2011 Jul 8.
2
Influx of extracellular Ca2+ is necessary for electrotaxis in Dictyostelium.
J Cell Sci. 2006 Nov 15;119(Pt 22):4741-8. doi: 10.1242/jcs.03248. Epub 2006 Oct 31.
3
Normal chemotaxis in Dictyostelium discoideum cells with a depolarized plasma membrane potential.
J Cell Sci. 1990 Jan;95 ( Pt 1):177-83. doi: 10.1242/jcs.95.1.177.
4
Genetic analysis of the role of G protein-coupled receptor signaling in electrotaxis.
J Cell Biol. 2002 Jun 10;157(6):921-7. doi: 10.1083/jcb.200112070. Epub 2002 Jun 3.
5
A large-scale screen reveals genes that mediate electrotaxis in Dictyostelium discoideum.
Sci Signal. 2015 May 26;8(378):ra50. doi: 10.1126/scisignal.aab0562.
6
Electrotaxis-on-Chip to Quantify Neutrophil Migration Towards Electrochemical Gradients.
Front Immunol. 2021 Aug 6;12:674727. doi: 10.3389/fimmu.2021.674727. eCollection 2021.
7
Phosphatidylinositol 3-kinases play a suppressive role in cell motility of vegetative Dictyostelium cells.
Biochem Biophys Res Commun. 2022 Nov 12;629:106-111. doi: 10.1016/j.bbrc.2022.09.024. Epub 2022 Sep 10.
8
Electrotaxis of Dictyostelium discoideum, Migration in an Electric Field.
Methods Mol Biol. 2024;2828:107-117. doi: 10.1007/978-1-0716-4023-4_10.
9
Control of neonatal human dermal fibroblast migration on poly(lactic-co-glycolic acid)-coated surfaces by electrotaxis.
J Tissue Eng Regen Med. 2017 Mar;11(3):862-868. doi: 10.1002/term.1986. Epub 2015 Jan 28.
10
A flow-based microfluidic device for spatially quantifying intracellular calcium ion activity during cellular electrotaxis.
Biomicrofluidics. 2019 Nov 7;13(6):064107. doi: 10.1063/1.5124846. eCollection 2019 Nov.

引用本文的文献

1
Nhe1 is required for directional sensing in vegetative cell migration.
Cell Adh Migr. 2025 Dec;19(1):2514374. doi: 10.1080/19336918.2025.2514374. Epub 2025 Jun 3.
2
The Synergy of Thermal and Non-Thermal Effects in Hyperthermic Oncology.
Cancers (Basel). 2024 Nov 21;16(23):3908. doi: 10.3390/cancers16233908.
3
Electrical stimulation: a novel therapeutic strategy to heal biological wounds.
RSC Adv. 2024 Oct 11;14(44):32142-32173. doi: 10.1039/d4ra04258a. eCollection 2024 Oct 9.
4
Ion Signaling in Cell Motility and Development in .
Biomolecules. 2024 Jul 10;14(7):830. doi: 10.3390/biom14070830.
5
The role of TGF-β in the electrotactic reaction of mouse 3T3 fibroblasts .
Acta Biochim Pol. 2024 Jun 25;71:12993. doi: 10.3389/abp.2024.12993. eCollection 2024.
8
Analysis of Electric Field Stimulation in Blue Light Stressed 661W Cells.
Int J Mol Sci. 2023 Feb 8;24(4):3433. doi: 10.3390/ijms24043433.
9
Electrotaxis-on-Chip to Quantify Neutrophil Migration Towards Electrochemical Gradients.
Front Immunol. 2021 Aug 6;12:674727. doi: 10.3389/fimmu.2021.674727. eCollection 2021.

本文引用的文献

1
New insights into the regulation of ion channels by integrins.
Int Rev Cell Mol Biol. 2010;279:135-90. doi: 10.1016/S1937-6448(10)79005-5. Epub 2010 Jan 29.
2
Cellular responses to extracellular guidance cues.
EMBO J. 2010 Aug 18;29(16):2734-45. doi: 10.1038/emboj.2010.170.
4
Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis.
J Cell Biol. 2010 Jul 26;190(2):233-45. doi: 10.1083/jcb.201001129.
5
Integrin receptors and ligand-gated channels.
Adv Exp Med Biol. 2010;674:95-105. doi: 10.1007/978-1-4419-6066-5_9.
6
Understanding eukaryotic chemotaxis: a pseudopod-centred view.
Nat Rev Mol Cell Biol. 2010 Jun;11(6):453-8. doi: 10.1038/nrm2905. Epub 2010 May 6.
7
Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity.
Annu Rev Biophys. 2010;39:265-89. doi: 10.1146/annurev.biophys.093008.131228.
8
Molecular cues guiding inflammatory responses.
Cardiovasc Res. 2010 May 1;86(2):174-82. doi: 10.1093/cvr/cvq001. Epub 2010 Jan 6.
9
Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix.
Cell Tissue Res. 2010 Jan;339(1):131-53. doi: 10.1007/s00441-009-0896-5. Epub 2009 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验