Suppr超能文献

荧光金属纳米壳:荧光细胞成像中寿命可调的分子探针

Fluorescent Metal Nanoshells: Lifetime-Tunable Molecular Probes in Fluorescent Cell Imaging.

作者信息

Zhang Jian, Fu Yi, Lakowicz Joseph R

机构信息

Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, 725 West Lombard Street, Baltimore, MD 21201.

出版信息

J Phys Chem C Nanomater Interfaces. 2011 Mar 25;115(15):7255-7260. doi: 10.1021/jp111475y.

Abstract

We reported the preparation of lifetime-tunable fluorescent metal nanoshells and used them as lifetime imaging agents for potential detection of multiple target molecules by a single cell imaging scan. These metal nanoshells were generated to have 40 nm silica cores and 10 nm silver shells. Three kinds of metal-ligand complexes tris(5-amino-1,10-phenanthroline)ruthenium(II) (Ru(NH(2)-Phen)(3) (2+)), tris(2,2'-bipyridine) ruthenium(II) (Ru(bpy)(3) (2+)), and tris(2,3-bis(2-pyridyl)pyrazine))ruthenium(II) (Ru(dpp)(3) (2+)) that have similar excitation and emission wavelengths but different lifetimes were respectively encapsulated in the cores of metal nanoshells for the purpose of fluorescence. Compared with the metal-free silica spheres, these metal nanoshells were found to display enhanced emission intensities and shortened lifetimes due to near-field interactions of Ru(II) complexes with the metal shells. The shortened lifetimes of these metal nanoshells were definitely unique relevant to the Ru(II) complexes: 10 ns for the Ru(Phen-NH(2))(3) (2+)-Ag nanoshells, 45 ns for the Ru(bpy)(3) (2+)-Ag nanoshells, and 200 ns for the Ru(dpp)(3) (2+)-Ag nanoshells. These lifetimes were longer than the lifetime of cellular autofluorescence (2 - 5 ns), so the emission signals of these metal nanoshells could be distinctly isolated from the cellular background on the lifetime cell images. Moreover, these lifetimes were also different from one another, resulting in the emission signals of three metal nanoshells could be distinguished from one another on the cell images. This feature may offer an opportunity to detect multiple target molecules in a single cell imaging scan when the metal nanoshells are bound with various targets in the cells.

摘要

我们报道了寿命可调谐荧光金属纳米壳的制备,并将其用作寿命成像剂,通过单细胞成像扫描潜在检测多种靶分子。这些金属纳米壳的二氧化硅核为40 nm,银壳为10 nm。为了实现荧光,三种具有相似激发和发射波长但不同寿命的金属 - 配体配合物三(5 - 氨基 - 1,10 - 菲咯啉)钌(II)(Ru(NH(2)-Phen)(3) (2+))、三(2,2'-联吡啶)钌(II)(Ru(bpy)(3) (2+))和三(2,3 - 双(2 - 吡啶基)吡嗪)钌(II)(Ru(dpp)(3) (2+))分别被封装在金属纳米壳的核中。与无金属的二氧化硅球相比,由于Ru(II)配合物与金属壳的近场相互作用,发现这些金属纳米壳显示出增强的发射强度和缩短的寿命。这些金属纳米壳缩短的寿命与Ru(II)配合物绝对相关:Ru(Phen - NH(2))(3) (2+) - Ag纳米壳为10 ns,Ru(bpy)(3) (2+) - Ag纳米壳为45 ns,Ru(dpp)(3) (2+) - Ag纳米壳为200 ns。这些寿命比细胞自发荧光的寿命(2 - 5 ns)长,因此这些金属纳米壳的发射信号可以在寿命细胞图像上与细胞背景明显区分开来。此外,这些寿命彼此也不同,导致三种金属纳米壳的发射信号在细胞图像上可以相互区分。当金属纳米壳与细胞中的各种靶标结合时,这一特性可能为在单细胞成像扫描中检测多种靶分子提供机会。

相似文献

1
Fluorescent Metal Nanoshells: Lifetime-Tunable Molecular Probes in Fluorescent Cell Imaging.
J Phys Chem C Nanomater Interfaces. 2011 Mar 25;115(15):7255-7260. doi: 10.1021/jp111475y.
2
Fluorescent metal nanoshell probe to detect single miRNA in lung cancer cell.
Anal Chem. 2010 Jun 1;82(11):4464-71. doi: 10.1021/ac100241f.
3
Bimetallic Nanoshells for Metal - Enhanced Fluorescence with Broad Band Fluorophores.
J Phys Chem C Nanomater Interfaces. 2012 Nov 15;116(45):24224-24232. doi: 10.1021/jp3057527. Epub 2012 Oct 25.
4
Fluorescent metal nanoshell and CK19 detection on single cell image.
Biochem Biophys Res Commun. 2011 Sep 16;413(1):53-7. doi: 10.1016/j.bbrc.2011.08.042. Epub 2011 Aug 17.
6
Target molecule imaging on tissue specimens by fluorescent metal nanoprobes.
J Biomed Opt. 2011 Nov;16(11):116004. doi: 10.1117/1.3644394.
8
New supramolecular structural motif coupling a ruthenium(II) polyazine light absorber to a rhodium(I) center.
Inorg Chem. 2013 Dec 2;52(23):13314-24. doi: 10.1021/ic4006828. Epub 2013 Nov 18.

引用本文的文献

1
Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection.
Anal Biochem. 2017 Aug 15;531:20-36. doi: 10.1016/j.ab.2017.05.020. Epub 2017 May 17.
2
Gated Luminescence Imaging of Silicon Nanoparticles.
ACS Nano. 2015 Jun 23;9(6):6233-41. doi: 10.1021/acsnano.5b01594. Epub 2015 Jun 9.
3
Fluorescence enhancement of molecules inside a gold nanomatryoshka.
Nano Lett. 2014 May 14;14(5):2926-33. doi: 10.1021/nl501027j. Epub 2014 Apr 23.
4
Bimetallic Nanoshells for Metal - Enhanced Fluorescence with Broad Band Fluorophores.
J Phys Chem C Nanomater Interfaces. 2012 Nov 15;116(45):24224-24232. doi: 10.1021/jp3057527. Epub 2012 Oct 25.
5
Reduced lifetimes are directly correlated with excitation irradiance in metal-enhanced fluorescence (MEF).
J Fluoresc. 2012 Nov;22(6):1659-62. doi: 10.1007/s10895-012-1132-3. Epub 2012 Oct 9.

本文引用的文献

2
Fluorescent metal nanoshell probe to detect single miRNA in lung cancer cell.
Anal Chem. 2010 Jun 1;82(11):4464-71. doi: 10.1021/ac100241f.
3
Fluorescence lifetime measurements and biological imaging.
Chem Rev. 2010 May 12;110(5):2641-84. doi: 10.1021/cr900343z.
4
Emission Behavior of Fluorescently Labeled Silver Nanoshell: Enhanced Self-Quenching by Metal Nanostructure.
J Phys Chem C Nanomater Interfaces. 2007 Feb 8;111(5):1955-1961. doi: 10.1021/jp063996u.
5
Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach.
Acc Chem Res. 2010 Jan 19;43(1):48-57. doi: 10.1021/ar900101s.
7
Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
Acc Chem Res. 2008 Dec;41(12):1842-51. doi: 10.1021/ar800150g.
8
Probing the dynamics of protein-protein interactions at neuronal contacts by optical imaging.
Chem Rev. 2008 May;108(5):1565-87. doi: 10.1021/cr078204m. Epub 2008 May 1.
9
10
Photochemistry on metal nanoparticles.
Chem Rev. 2006 Oct;106(10):4301-20. doi: 10.1021/cr050167g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验