State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
Chem Soc Rev. 2012 Jan 7;41(1):192-210. doi: 10.1039/c1cs15009j. Epub 2011 Jul 11.
In situ solid-state NMR is a well-established tool for investigations of the structures of the adsorbed reactants, intermediates and products on the surface of solid catalysts. The techniques allow identifications of both the active sites such as acidic sites and reaction processes after introduction of adsorbates and reactants inside an NMR rotor under magic angle spinning (MAS). The in situ solid-state NMR studies of the reactions can be achieved in two ways, i.e. under batch-like or continuous-flow conditions. The former technique is low cost and accessible to the commercial instrument while the latter one is close to the real catalytic reactions on the solids. This critical review describes the research progress on the in situ solid-state NMR techniques and the applications in heterogeneous catalysis under batch-like and continuous-flow conditions in recent years. Some typical probe molecules are summarized here to detect the Brønsted and Lewis acidic sites by MAS NMR. The catalytic reactions discussed in this review include methane aromatization, olefin selective oxidation and olefin metathesis on the metal oxide-containing zeolites. With combining the in situ MAS NMR spectroscopy and the density functional theoretical (DFT) calculations, the intermediates on the catalyst can be identified, and the reaction mechanism is revealed. Reaction kinetic analysis in the nanospace instead of in the bulk state can also be performed by employing laser-enhanced MAS NMR techniques in the in situ flow mode (163 references).
原位固态 NMR 是一种成熟的工具,用于研究固体催化剂表面吸附反应物、中间物和产物的结构。这些技术允许在魔角旋转(MAS)下,在 NMR 转子内引入吸附物和反应物后,识别出活性位,如酸性位,以及反应过程。原位固态 NMR 研究可以通过两种方式进行,即在分批或连续流动条件下进行。前者技术成本低,商业仪器即可实现,而后者更接近固体上的真实催化反应。这篇评论性文章描述了近年来在分批和连续流动条件下,原位固态 NMR 技术在多相催化中的研究进展和应用。这里总结了一些典型的探针分子,通过 MAS NMR 检测 Brønsted 和 Lewis 酸性位。本文讨论的催化反应包括含金属氧化物沸石上的甲烷芳构化、烯烃选择性氧化和烯烃复分解。通过原位 MAS NMR 光谱和密度泛函理论(DFT)计算相结合,可以识别催化剂上的中间体,并揭示反应机理。通过在原位流动模式下使用激光增强 MAS NMR 技术(163 篇参考文献),也可以在纳米空间而不是在体相状态下进行反应动力学分析。