Suppr超能文献

Effects of neutrophil-derived oxidants on intestinal permeability, electrolyte transport, and epithelial cell viability.

作者信息

Grisham M B, Gaginella T S, von Ritter C, Tamai H, Be R M, Granger D N

机构信息

Department of Physiology and Biophysics, LSU Medical Center 71130.

出版信息

Inflammation. 1990 Oct;14(5):531-42. doi: 10.1007/BF00914274.

Abstract

There are several pathophysiologic conditions in which intestinal inflammation is associated with enhanced mucosal permeability, fluid loss, and epithelial cell injury. The objective of this study was to determine the effects of polymorphonuclear leukocyte (PMN)-derived oxidants on ileal mucosal permeability in vivo as well as electrolyte transport and epithelial cell viability in vitro. Using blood-to-lumen clearance of [51Cr]EDTA as a measure of mucosal permeability, we found that luminal perfusion with hydrogen peroxide (H2O2), hypochlorous acid (HOCl), or monochloramine (NH2Cl) produced a dose-dependent increase in mucosal permeability. Perfusion with 0.1 mM, 0.5 mM, and 1.0 mM oxidant produced a 2 +/- 1, 5 +/- 2, and 11 +/- 5-fold increase in mucosal permeability for H2O2, a 2 +/- 1, 8 +/- 3, and 36 +/- 12-fold increase for HOCl, and a 3 +/- 1, 11 +/- 2, and 30 +/- 7-fold increase for NH2Cl. Taurine monochloramine (TauNHCl) was ineffective in enhancing the blood-to-lumen clearance of [51Cr]EDTA. Furthermore, 0.01 mM and 0.1 mM NH2Cl and H2O2 produced significant increases in short-circuit current across rat ileum in vitro, whereas HOCl and TauNHCl were without effect. Tissue resistance and potential difference were not altered, suggesting that NH2Cl, HOCl, and H2O2 were not cytotoxic under these conditions. Cultured intestinal epithelial cells exposed to NH2Cl and HOCl were injured in a dose-dependent manner in vitro, whereas H2O2 and Tau NHCl were nontoxic. Taken together, our data suggest that PMN-derived oxidants may mediate the enhanced mucosal permeability, electrolyte transport, and epithelial cell injury associated with acute inflammation of the bowel.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验