Suppr超能文献

先天性角化不良是一种端粒维持障碍。

Dyskeratosis congenita as a disorder of telomere maintenance.

机构信息

Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX 77030, USA.

出版信息

Mutat Res. 2012 Feb 1;730(1-2):43-51. doi: 10.1016/j.mrfmmm.2011.06.008. Epub 2011 Jul 2.

Abstract

Since 1998, there have been great advances in our understanding of the pathogenesis of dyskeratosis congenita (DC), a rare inherited bone marrow failure and cancer predisposition syndrome with prominent mucocutaneous abnormalities and features of premature aging. DC is now characterized molecularly by the presence of short age-adjusted telomeres. Mutations in seven genes have been unequivocally associated with DC, each with a role in telomere length maintenance. These observations, combined with knowledge that progressive telomere shortening can impose a proliferative barrier on dividing cells and contribute to chromosome instability, have led to the understanding that extreme telomere shortening drives the clinical features of DC. However, some of the genes implicated in DC encode proteins that are also components of H/ACA-ribonucleoprotein enzymes, which are responsible for the post-translational modification of ribosomal and spliceosomal RNAs, raising the question whether alterations in these activities play a role in the pathogenesis of DC. In addition, recent reports suggest that some cases of DC may not be characterized by short age-adjusted telomeres. This review will highlight our current knowledge of the telomere length defects in DC and the factors involved in its development.

摘要

自 1998 年以来,我们对先天性角化不良(DC)的发病机制有了更深入的了解。DC 是一种罕见的遗传性骨髓衰竭和癌症易感性综合征,其特征为明显的黏膜皮肤异常和早衰表现。目前,DC 在分子水平上的特征是存在短的年龄校正端粒。已有明确证据表明,七个基因的突变与 DC 相关,每个基因在端粒长度维持中都有作用。这些观察结果,加上渐进性端粒缩短会对分裂细胞施加增殖障碍并导致染色体不稳定的知识,使人们理解到极端端粒缩短驱动 DC 的临床特征。然而,一些与 DC 相关的基因编码的蛋白质也是 H/ACA-核糖核蛋白酶的组成部分,这些酶负责核糖体和剪接体 RNA 的翻译后修饰,这就提出了这样一个问题,即这些活性的改变是否在 DC 的发病机制中起作用。此外,最近的报告表明,一些 DC 病例可能不具有短的年龄校正端粒。本文将重点介绍我们目前对 DC 中端粒长度缺陷的认识,以及其发展过程中的相关因素。

相似文献

1
Dyskeratosis congenita as a disorder of telomere maintenance.
Mutat Res. 2012 Feb 1;730(1-2):43-51. doi: 10.1016/j.mrfmmm.2011.06.008. Epub 2011 Jul 2.
2
Advances in the understanding of dyskeratosis congenita.
Br J Haematol. 2009 Apr;145(2):164-72. doi: 10.1111/j.1365-2141.2009.07598.x. Epub 2009 Feb 4.
4
The genetics of dyskeratosis congenita.
Cancer Genet. 2011 Dec;204(12):635-45. doi: 10.1016/j.cancergen.2011.11.002.
5
Dyskeratosis congenita: a disorder of defective telomere maintenance?
Int J Hematol. 2005 Oct;82(3):184-9. doi: 10.1532/IJH97.05067.
7
A TIN2 dyskeratosis congenita mutation causes telomerase-independent telomere shortening in mice.
Genes Dev. 2014 Jan 15;28(2):153-66. doi: 10.1101/gad.233395.113.
8
The relationship between DNA methylation and telomere length in dyskeratosis congenita.
Aging Cell. 2012 Feb;11(1):24-8. doi: 10.1111/j.1474-9726.2011.00755.x. Epub 2011 Nov 15.
9
Dyskeratosis congenita: a genetic disorder of many faces.
Clin Genet. 2008 Feb;73(2):103-12. doi: 10.1111/j.1399-0004.2007.00923.x. Epub 2007 Nov 14.
10
TIN2 protein dyskeratosis congenita missense mutants are defective in association with telomerase.
J Biol Chem. 2011 Jul 1;286(26):23022-30. doi: 10.1074/jbc.M111.225870. Epub 2011 May 2.

引用本文的文献

1
Targeting DKC1/NF-κB axis suppresses tumorigenesis and enhances 5-FU sensitivity in gastric cancer.
Cancer Cell Int. 2025 Jul 28;25(1):288. doi: 10.1186/s12935-025-03926-4.
3
Telomeres: an organized string linking plants and mammals.
Biol Direct. 2024 Nov 20;19(1):119. doi: 10.1186/s13062-024-00558-y.
4
Inherited Predispositions to Myeloid Neoplasms: Pathogenesis and Clinical Implications.
Annu Rev Pathol. 2025 Jan;20(1):87-114. doi: 10.1146/annurev-pathmechdis-111523-023420. Epub 2025 Jan 2.
5
6
Dyskeratosis congenita: natural history of the disease through the study of a cohort of patients diagnosed in childhood.
Front Pediatr. 2023 Aug 1;11:1182476. doi: 10.3389/fped.2023.1182476. eCollection 2023.
8
Sperm telomere length as a novel biomarker of male infertility and embryonic development: A systematic review and meta-analysis.
Front Endocrinol (Lausanne). 2023 Jan 11;13:1079966. doi: 10.3389/fendo.2022.1079966. eCollection 2022.
9
Novel gene mutation in dyskeratosis congenita with extremely short telomeres: A case report.
World J Clin Cases. 2022 Nov 26;10(33):12440-12446. doi: 10.12998/wjcc.v10.i33.12440.
10
Shelterin is a dimeric complex with extensive structural heterogeneity.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2201662119. doi: 10.1073/pnas.2201662119. Epub 2022 Jul 26.

本文引用的文献

1
Clinical utility gene card for: dyskeratosis congenita.
Eur J Hum Genet. 2011 Nov;19(11). doi: 10.1038/ejhg.2011.90. Epub 2011 May 25.
2
TIN2 protein dyskeratosis congenita missense mutants are defective in association with telomerase.
J Biol Chem. 2011 Jul 1;286(26):23022-30. doi: 10.1074/jbc.M111.225870. Epub 2011 May 2.
3
Three novel truncating TINF2 mutations causing severe dyskeratosis congenita in early childhood.
Clin Genet. 2012 May;81(5):470-8. doi: 10.1111/j.1399-0004.2011.01658.x. Epub 2011 Apr 7.
4
Decreased dyskerin levels as a mechanism of telomere shortening in X-linked dyskeratosis congenita.
J Med Genet. 2011 May;48(5):327-33. doi: 10.1136/jmg.2010.085100. Epub 2011 Mar 17.
5
Sequence analysis of the shelterin telomere protection complex genes in dyskeratosis congenita.
J Med Genet. 2011 Apr;48(4):285-8. doi: 10.1136/jmg.2010.082727. Epub 2011 Jan 5.
6
Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita.
Genes Dev. 2011 Jan 1;25(1):11-6. doi: 10.1101/gad.2006411.
7
The genetics and clinical manifestations of telomere biology disorders.
Genet Med. 2010 Dec;12(12):753-64. doi: 10.1097/GIM.0b013e3181f415b5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验