Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220 Davutpasa, Esenler, Istanbul, Turkey.
Waste Manag. 2011 Nov;31(11):2263-74. doi: 10.1016/j.wasman.2011.06.005. Epub 2011 Jul 13.
One-dimensional (1D) advection-dispersion transport modeling was conducted as a conceptual approach for the estimation of the transport parameters of fourteen different phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and three different inorganic contaminants (Cu, Zn, Fe) migrating downward through the several liner systems. Four identical pilot-scale landfill reactors (0.25 m3) with different composite liners (R1: 0.10+0.10 m of compacted clay liner (CCL), L(e) = 0.20 m, k(e) = 1 × 10(-8) m/s, R2: 0.002-m-thick damaged high-density polyethylene (HDPE) geomembrane overlying 0.10+0.10 m of CCL, L(e) = 0.20 m, k(e) = 1 × 10(-8) m/s, R3: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick bentonite layer encapsulated between 0.10+0.10 m CCL, L(e) = 0.22 m, k(e) = 1 × 10(-8) m/s, R4: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick zeolite layer encapsulated between 0.10+0.10 m CCL, L(e) = 0.22 m, k(e) = 4.24 × 10(-7) m/s) were simultaneously run for a period of about 540 days to investigate the nature of diffusive and advective transport of the selected organic and inorganic contaminants. The results of 1D transport model showed that the highest molecular diffusion coefficients, ranging from 4.77×10(-10) to 10.67 × 10(-10)m2/s, were estimated for phenol (R4), 2-MP (R1), 2,4-DNP (R2), 2,4-DCP (R1), 2,6-DCP (R2), 2,4,5-TCP (R2) and 2,3,4,6-TeCP (R1). For all reactors, dispersion coefficients of Cu, ranging from 3.47 × 10(-6) m(2)/s to 5.37 × 10(-2) m2/s, was determined to be higher than others obtained for Zn and Fe. Average molecular diffusion coefficients of phenolic compounds were estimated to be about 5.64 × 10(-10) m2/s, 5.37 × 10(-10) m2/s, 2.69 × 10(-10) m2/s and 3.29 × 10(-10) m2/s for R1, R2, R3 and R4 systems, respectively. The findings of this study clearly indicated that about 35-50% of transport of phenolic compounds to the groundwater is believed to be prevented with the use of zeolite and bentonite materials in landfill liner systems.
一维(1D)对流-弥散输运模型被用作估计 14 种不同酚类化合物(苯酚、2-CP、2-MP、3-MP、4-MP、2-NP、4-NP、2,4-DNP、2,4-DCP、2,6-DCP、2,4,5-TCP、2,4,6-TCP、2,3,4,6-TeCP、PCP)和 3 种不同无机污染物(Cu、Zn、Fe)在几个衬层系统中向下迁移的传输参数的概念方法。四个相同的中试规模填埋场反应堆(0.25 m3)采用不同的复合衬层(R1:0.10+0.10 m 压实粘土衬层(CCL),L(e) = 0.20 m,k(e) = 1×10(-8) m/s,R2:0.002-m 厚损坏高密度聚乙烯(HDPE)土工膜覆盖 0.10+0.10 m CCL,L(e) = 0.20 m,k(e) = 1×10(-8) m/s,R3:0.002-m 厚损坏高密度聚乙烯(HDPE)土工膜覆盖 0.02-m 厚膨润土层,膨润土层夹在 0.10+0.10 m CCL 之间,L(e) = 0.22 m,k(e) = 1×10(-8) m/s,R4:0.002-m 厚损坏高密度聚乙烯(HDPE)土工膜覆盖 0.02-m 厚沸石层,沸石层夹在 0.10+0.10 m CCL 之间,L(e) = 0.22 m,k(e) = 4.24×10(-7) m/s)同时运行约 540 天,以研究所选有机和无机污染物的扩散和对流输运特性。1D 输运模型的结果表明,酚类化合物(R4)、2-MP(R1)、2,4-DNP(R2)、2,4-DCP(R1)、2,6-DCP(R2)、2,4,5-TCP(R2)和 2,3,4,6-TeCP(R1)的最高分子扩散系数估计值在 4.77×10(-10)到 10.67×10(-10)m2/s 之间。对于所有的反应堆,Cu 的弥散系数范围从 3.47×10(-6) m(2)/s 到 5.37×10(-2) m2/s,被确定为高于其他 Zn 和 Fe 的获得值。酚类化合物的平均分子扩散系数估计分别为 R1、R2、R3 和 R4 系统的约 5.64×10(-10) m2/s、5.37×10(-10) m2/s、2.69×10(-10) m2/s 和 3.29×10(-10) m2/s。本研究的结果清楚地表明,在填埋场衬层系统中使用沸石和膨润土材料,约有 35-50%的酚类化合物向地下水的迁移可能会被阻止。