Suppr超能文献

苏打湖极端盐碱条件下的微生物硫循环。

The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes.

作者信息

Sorokin Dimitry Y, Kuenen J Gijs, Muyzer Gerard

机构信息

Winogradsky Institute of Microbiology, Russian Academy of Sciences Moscow, Russia.

出版信息

Front Microbiol. 2011 Mar 21;2:44. doi: 10.3389/fmicb.2011.00044. eCollection 2011.

Abstract

Soda lakes represent a unique ecosystem with extremely high pH (up to 11) and salinity (up to saturation) due to the presence of high concentrations of sodium carbonate in brines. Despite these double extreme conditions, most of the lakes are highly productive and contain a fully functional microbial system. The microbial sulfur cycle is among the most active in soda lakes. One of the explanations for that is high-energy efficiency of dissimilatory conversions of inorganic sulfur compounds, both oxidative and reductive, sufficient to cope with costly life at double extreme conditions. The oxidative part of the sulfur cycle is driven by chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria (SOB), which are unique for soda lakes. The haloalkaliphilic SOB are present in the surface sediment layer of various soda lakes at high numbers of up to 10(6) viable cells/cm(3). The culturable forms are so far represented by four novel genera within the Gammaproteobacteria, including the genera Thioalkalivibrio, Thioalkalimicrobium, Thioalkalispira, and Thioalkalibacter. The latter two were only found occasionally and each includes a single species, while the former two are widely distributed in various soda lakes over the world. The genus Thioalkalivibrio is the most physiologically diverse and covers the whole spectrum of salt/pH conditions present in soda lakes. Most importantly, the dominant subgroup of this genus is able to grow in saturated soda brines containing 4 M total Na(+) - a so far unique property for any known aerobic chemolithoautotroph. Furthermore, some species can use thiocyanate as a sole energy source and three out of nine species can grow anaerobically with nitrogen oxides as electron acceptor. The reductive part of the sulfur cycle is active in the anoxic layers of the sediments of soda lakes. The in situ measurements of sulfate reduction rates and laboratory experiments with sediment slurries using sulfate, thiosulfate, or elemental sulfur as electron acceptors demonstrated relatively high sulfate reduction rates only hampered by salt-saturated conditions. However, the highest rates of sulfidogenesis were observed not with sulfate, but with elemental sulfur followed by thiosulfate. Formate, but not hydrogen, was the most efficient electron donor with all three sulfur electron acceptors, while acetate was only utilized as an electron donor under sulfur-reducing conditions. The native sulfidogenic populations of soda lakes showed a typical obligately alkaliphilic pH response, which corresponded well to the in situ pH conditions. Microbiological analysis indicated a domination of three groups of haloalkaliphilic autotrophic sulfate-reducing bacteria belonging to the order Desulfovibrionales (genera Desulfonatronovibrio, Desulfonatronum, and Desulfonatronospira) with a clear tendency to grow by thiosulfate disproportionation in the absence of external electron donor even at salt-saturating conditions. Few novel representatives of the order Desulfobacterales capable of heterotrophic growth with volatile fatty acids and alcohols at high pH and moderate salinity have also been found, while acetate oxidation was a function of a specialized group of haloalkaliphilic sulfur-reducing bacteria, which belong to the phylum Chrysiogenetes.

摘要

苏打湖代表了一种独特的生态系统,由于卤水中存在高浓度的碳酸钠,其pH值极高(可达11)且盐度极高(可达饱和)。尽管存在这两种极端条件,但大多数苏打湖生产力很高,并且包含一个功能齐全的微生物系统。微生物硫循环是苏打湖中最活跃的循环之一。对此的一种解释是无机硫化合物异化转化的高能效,包括氧化和还原过程,足以应对在双重极端条件下代价高昂的生命活动。硫循环的氧化部分由化能自养嗜盐碱硫氧化细菌(SOB)驱动,这是苏打湖所特有的。嗜盐碱SOB大量存在于各种苏打湖的表层沉积层中,数量高达每立方厘米10⁶个活细胞。到目前为止,可培养的形式由γ-变形菌纲中的四个新属代表,包括硫碱弧菌属、硫碱微菌属、硫碱螺菌属和硫碱杆菌属。后两个属只是偶尔被发现,每个属都只有一个物种,而前两个属广泛分布于世界各地的各种苏打湖中。硫碱弧菌属在生理上最为多样,涵盖了苏打湖中存在的整个盐度/pH条件范围。最重要的是,该属的优势亚群能够在总Na⁺含量为4M的饱和苏打卤水中生长——这是任何已知的好氧化能自养生物迄今为止独一无二的特性。此外,一些物种可以将硫氰酸盐作为唯一的能量来源,并且九个物种中有三个可以以氮氧化物作为电子受体进行厌氧生长。硫循环的还原部分在苏打湖沉积物的缺氧层中活跃。对硫酸盐还原速率的原位测量以及使用硫酸盐、硫代硫酸盐或元素硫作为电子受体的沉积物浆液的实验室实验表明,相对较高的硫酸盐还原速率仅受到盐饱和条件的阻碍。然而,观察到最高的硫化物生成速率不是与硫酸盐相关,而是与元素硫相关,其次是硫代硫酸盐。甲酸盐而非氢气是所有三种硫电子受体最有效的电子供体,而乙酸盐仅在硫还原条件下用作电子供体。苏打湖原生的硫化物生成菌群表现出典型的严格嗜碱pH响应,这与原位pH条件非常吻合。微生物分析表明,属于脱硫弧菌目(脱硫钠弧菌属、脱硫钠菌属和脱硫钠螺菌属)的三组嗜盐碱自养硫酸盐还原细菌占主导地位,即使在盐饱和条件下,在没有外部电子供体的情况下,它们也明显倾向于通过硫代硫酸盐歧化生长。还发现了脱硫杆菌目的一些新代表,它们能够在高pH和中等盐度下利用挥发性脂肪酸和醇进行异养生长,而乙酸盐氧化是一组专门的嗜盐碱硫还原细菌的功能,这些细菌属于 Chrysiogenetes 门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adfe/3128939/6f061ba215cc/fmicb-02-00044-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验