Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
Proteins. 2011 Dec;79(12):3511-24. doi: 10.1002/prot.23095. Epub 2011 Jul 11.
Using molecular dynamics simulations, we explore geometric and physical factors contributing to calculated electrostatic fields at the binding surface of the GTPase Ras with a spectroscopically labeled variant of a downstream effector, the Ras-binding domain of Ral guanine nucleotide dissociation stimulator (RalGDS). A related system (differing by mutation of one amino acid) has been studied in our group using vibrational Stark effect spectroscopy, a technique sensitive to electrostatic fields. Electrostatic fields were computed using the AMBER 2003 force field and averaged over snapshots from molecular dynamics simulation. We investigate geometric factors by exploring how the orientation of the spectroscopic probe changes on Ras-effector binding. In addition, we explore the physical origin of electrostatic fields at our spectroscopic probe by comparing contributions to the field from discrete components of the system, such as explicit solvent, residues on the Ras surface, and residues on the RalGDS surface. These models support our experimental hypothesis that vibrational Stark shifts are caused by Ras binding to its effector and not the structural rearrangements of the effector surface or probe reorientation on Ras-effector binding, for at least some of our experimental probes. These calculations provide physical insight into the origin, magnitude, and importance of electrostatic fields in protein-protein interactions and suggest new experiments to probe the field's role in protein docking.
我们使用分子动力学模拟,探索导致 GTPase Ras 与其下游效应物(Ral 鸟苷酸解离刺激因子的 Ras 结合域)的光谱标记变体在结合表面的计算静电场的几何和物理因素。我们小组使用振动斯塔克效应光谱学研究了一个相关的系统(通过突变一个氨基酸而有所不同),该技术对静电场敏感。使用 AMBER 2003 力场计算静电场,并对分子动力学模拟中的快照进行平均。我们通过探索光谱探针在 Ras-效应物结合时的取向变化来研究几何因素。此外,我们通过比较系统的离散成分(如显式溶剂、Ras 表面上的残基和 RalGDS 表面上的残基)对电场的贡献,来探索我们光谱探针处静电场的物理起源。这些模型支持我们的实验假设,即振动斯塔克位移是由 Ras 与其效应物结合引起的,而不是由效应物表面的结构重排或探针在 Ras-效应物结合时的重排引起的,至少对于我们的一些实验探针是这样。这些计算为蛋白质-蛋白质相互作用中静电场的起源、大小和重要性提供了物理见解,并提出了新的实验来探测该场在蛋白质对接中的作用。