Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
Q Rev Biophys. 2012 Nov;45(4):427-91. doi: 10.1017/S003358351200011X.
An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.
理解分子间相互作用对于从分子尺度深入了解生物系统至关重要。在分子间相互作用的各种组成部分中,静电相互作用因其远程性质及其对极性或带电分子(包括水、水合离子、蛋白质、核酸、碳水化合物和膜脂质)的影响而尤为重要。特别是,稳健的静电相互作用模型对于理解生物分子的溶剂化性质以及溶剂化对生物分子折叠、结合、酶催化和动力学的影响至关重要。因此,静电相互作用对于理解生物分子结构和模拟生物分子内部和之间的相互作用至关重要。本综述从计算生物物理学的角度讨论生物分子的溶剂化现象,以描述这一现象。虽然我们的主要重点在于模型的计算方面,但我们提供了生物分子溶剂化的基本要素概述(例如溶剂结构、极化、离子结合和非极性行为),以便为理解不同类型的溶剂化模型提供背景。