Suppr超能文献

生物分子静电学与溶剂化:计算视角。

Biomolecular electrostatics and solvation: a computational perspective.

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Q Rev Biophys. 2012 Nov;45(4):427-91. doi: 10.1017/S003358351200011X.

Abstract

An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.

摘要

理解分子间相互作用对于从分子尺度深入了解生物系统至关重要。在分子间相互作用的各种组成部分中,静电相互作用因其远程性质及其对极性或带电分子(包括水、水合离子、蛋白质、核酸、碳水化合物和膜脂质)的影响而尤为重要。特别是,稳健的静电相互作用模型对于理解生物分子的溶剂化性质以及溶剂化对生物分子折叠、结合、酶催化和动力学的影响至关重要。因此,静电相互作用对于理解生物分子结构和模拟生物分子内部和之间的相互作用至关重要。本综述从计算生物物理学的角度讨论生物分子的溶剂化现象,以描述这一现象。虽然我们的主要重点在于模型的计算方面,但我们提供了生物分子溶剂化的基本要素概述(例如溶剂结构、极化、离子结合和非极性行为),以便为理解不同类型的溶剂化模型提供背景。

相似文献

1
Biomolecular electrostatics and solvation: a computational perspective.
Q Rev Biophys. 2012 Nov;45(4):427-91. doi: 10.1017/S003358351200011X.
2
Computational methods for biomolecular electrostatics.
Methods Cell Biol. 2008;84:843-70. doi: 10.1016/S0091-679X(07)84026-X.
4
Differential geometry based solvation model II: Lagrangian formulation.
J Math Biol. 2011 Dec;63(6):1139-200. doi: 10.1007/s00285-011-0402-z. Epub 2011 Jan 30.
6
Estimates of ligand-binding affinities supported by quantum mechanical methods.
Interdiscip Sci. 2010 Mar;2(1):21-37. doi: 10.1007/s12539-010-0083-0. Epub 2010 Jan 28.
9
A multiscale coarse-grained polarizable solvent model for handling long tail bulk electrostatics.
J Comput Chem. 2013 May 15;34(13):1112-24. doi: 10.1002/jcc.23237. Epub 2013 Feb 5.

引用本文的文献

1
Quantum Evaluation of a Comprehensive Set of Carboxylic Acid Bioisosteres: Gas versus Solvated Phases.
ACS Omega. 2025 Apr 25;10(17):17684-17693. doi: 10.1021/acsomega.4c11714. eCollection 2025 May 6.
3
The Streptococcus phage protein paratox is an intrinsically disordered protein.
Protein Sci. 2024 Jun;33(6):e5037. doi: 10.1002/pro.5037.
4
Structural and mechanistic insights into Quinolone Synthase to address its functional promiscuity.
Commun Biol. 2024 May 14;7(1):566. doi: 10.1038/s42003-024-06152-2.
6
RNA-ligand molecular docking: advances and challenges.
Wiley Interdiscip Rev Comput Mol Sci. 2022 May-Jun;12(3). doi: 10.1002/wcms.1571. Epub 2021 Aug 16.
7
Non-Ewald methods for evaluating the electrostatic interactions of charge systems: similarity and difference.
Biophys Rev. 2023 Jan 11;14(6):1315-1340. doi: 10.1007/s12551-022-01029-2. eCollection 2022 Dec.
8
Modeling of the Electrostatic Interaction and Catalytic Activity of [NiFe] Hydrogenases on a Planar Electrode.
J Phys Chem B. 2022 Nov 3;126(43):8777-8790. doi: 10.1021/acs.jpcb.2c05371. Epub 2022 Oct 21.
9
Predicting accurate ab initio DNA electron densities with equivariant neural networks.
Biophys J. 2022 Oct 18;121(20):3883-3895. doi: 10.1016/j.bpj.2022.08.045. Epub 2022 Sep 3.
10
Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.
Chem Rev. 2022 Jul 13;122(13):11287-11368. doi: 10.1021/acs.chemrev.1c00965. Epub 2022 May 20.

本文引用的文献

1
Monte Carlo simulations for free energies of hydration: Past to present.
J Chem Phys. 2024 Aug 14;161(6). doi: 10.1063/5.0222659.
3
Polarizable Atomic Multipole Solutes in a Generalized Kirkwood Continuum.
J Chem Theory Comput. 2007 Nov;3(6):2083-97. doi: 10.1021/ct7001336.
4
Polarizable Force Fields:  History, Test Cases, and Prospects.
J Chem Theory Comput. 2007 Nov;3(6):2034-45. doi: 10.1021/ct700127w.
5
Distributed Multipole Analysis:  Stability for Large Basis Sets.
J Chem Theory Comput. 2005 Nov;1(6):1128-32. doi: 10.1021/ct050190+.
6
Spontaneous Formation of KCl Aggregates in Biomolecular Simulations: A Force Field Issue?
J Chem Theory Comput. 2007 Sep;3(5):1851-9. doi: 10.1021/ct700143s.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验