Suppr超能文献

基因组重排过程中转录组结构的平行进化。

Parallel evolution of transcriptome architecture during genome reorganization.

机构信息

Institute for Systems Biology, Seattle, Washington 98109, USA.

出版信息

Genome Res. 2011 Nov;21(11):1892-904. doi: 10.1101/gr.122218.111. Epub 2011 Jul 12.

Abstract

Assembly of genes into operons is generally viewed as an important process during the continual adaptation of microbes to changing environmental challenges. However, the genome reorganization events that drive this process are also the roots of instability for existing operons. We have determined that there exists a statistically significant trend that correlates the proportion of genes encoded in operons in archaea to their phylogenetic lineage. We have further characterized how microbes deal with operon instability by mapping and comparing transcriptome architectures of four phylogenetically diverse extremophiles that span the range of operon stabilities observed across archaeal lineages: a photoheterotrophic halophile (Halobacterium salinarum NRC-1), a hydrogenotrophic methanogen (Methanococcus maripaludis S2), an acidophilic and aerobic thermophile (Sulfolobus solfataricus P2), and an anaerobic hyperthermophile (Pyrococcus furiosus DSM 3638). We demonstrate how the evolution of transcriptional elements (promoters and terminators) generates new operons, restores the coordinated regulation of translocated, inverted, and newly acquired genes, and introduces completely novel regulation for even some of the most conserved operonic genes such as those encoding subunits of the ribosome. The inverse correlation (r=-0.92) between the proportion of operons with such internally located transcriptional elements and the fraction of conserved operons in each of the four archaea reveals an unprecedented view into varying stages of operon evolution. Importantly, our integrated analysis has revealed that organisms adapted to higher growth temperatures have lower tolerance for genome reorganization events that disrupt operon structures.

摘要

基因组装成操纵子通常被认为是微生物不断适应环境变化挑战的重要过程。然而,驱动这一过程的基因组重排事件也是现有操纵子不稳定的根源。我们已经确定,在古菌中,操纵子中编码基因的比例与它们的系统发育谱系之间存在着统计学上显著的相关性。我们进一步通过比较和映射四种系统发育上多样化的极端微生物的转录组结构来描述微生物如何处理操纵子不稳定的问题,这些微生物跨越了古菌中观察到的操纵子稳定性范围:一种光异养嗜盐菌(盐杆菌 NRC-1)、一种产氢甲烷菌(甲烷八叠球菌 S2)、一种嗜酸好氧嗜热菌(硫磺酸 Solfataricus P2)和一种厌氧超嗜热菌(Pyrococcus furiosus DSM 3638)。我们展示了转录元件(启动子和终止子)的进化如何产生新的操纵子,恢复了转位、倒置和新获得基因的协调调节,并为甚至一些最保守的操纵子基因(如核糖体亚基编码基因)引入了全新的调节。在这四种古菌中,具有这种内部转录元件的操纵子的比例与保守操纵子的比例之间的逆相关(r=-0.92)揭示了操纵子进化的不同阶段的前所未有的观点。重要的是,我们的综合分析表明,适应更高生长温度的生物体对破坏操纵子结构的基因组重排事件的容忍度较低。

相似文献

1
Parallel evolution of transcriptome architecture during genome reorganization.
Genome Res. 2011 Nov;21(11):1892-904. doi: 10.1101/gr.122218.111. Epub 2011 Jul 12.
2
Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ.
Genome Biol. 2003;4(9):R55. doi: 10.1186/gb-2003-4-9-r55. Epub 2003 Aug 29.
4
Prevalence of transcription promoters within archaeal operons and coding sequences.
Mol Syst Biol. 2009;5:285. doi: 10.1038/msb.2009.42. Epub 2009 Jun 16.
5
Evolution of mal ABC transporter operons in the Thermococcales and Thermotogales.
BMC Evol Biol. 2008 Jan 15;8:7. doi: 10.1186/1471-2148-8-7.
7
Transcription start site associated RNAs (TSSaRNAs) are ubiquitous in all domains of life.
PLoS One. 2014 Sep 19;9(9):e107680. doi: 10.1371/journal.pone.0107680. eCollection 2014.
9
Ancient origin of the tryptophan operon and the dynamics of evolutionary change.
Microbiol Mol Biol Rev. 2003 Sep;67(3):303-42, table of contents. doi: 10.1128/MMBR.67.3.303-342.2003.
10
Revealing gene transcription and translation initiation patterns in archaea, using an interactive clustering model.
Extremophiles. 2004 Aug;8(4):291-9. doi: 10.1007/s00792-004-0388-1. Epub 2004 May 19.

引用本文的文献

1
Engineering the hyperthermophilic archaeon for 1-propanol production.
Appl Environ Microbiol. 2025 May 21;91(5):e0047125. doi: 10.1128/aem.00471-25. Epub 2025 Apr 7.
3
Proteomic perspectives on thermotolerant microbes: an updated review.
Mol Biol Rep. 2022 Jan;49(1):629-646. doi: 10.1007/s11033-021-06805-z. Epub 2021 Oct 20.
4
Study of Fe-S Cluster Proteins in Methanococcus maripaludis , a Model Archaeal Organism.
Methods Mol Biol. 2021;2353:37-50. doi: 10.1007/978-1-0716-1605-5_2.
7
Global Transcriptional Programs in Archaea Share Features with the Eukaryotic Environmental Stress Response.
J Mol Biol. 2019 Sep 20;431(20):4147-4166. doi: 10.1016/j.jmb.2019.07.029. Epub 2019 Aug 19.
9
Role of free DNA ends and protospacer adjacent motifs for CRISPR DNA uptake in Pyrococcus furiosus.
Nucleic Acids Res. 2017 Nov 2;45(19):11281-11294. doi: 10.1093/nar/gkx839.
10
Genomic and transcriptomic landscape of Escherichia coli BL21(DE3).
Nucleic Acids Res. 2017 May 19;45(9):5285-5293. doi: 10.1093/nar/gkx228.

本文引用的文献

1
Studying bacterial transcriptomes using RNA-seq.
Curr Opin Microbiol. 2010 Oct;13(5):619-24. doi: 10.1016/j.mib.2010.09.009. Epub 2010 Sep 29.
2
Economy of operon formation: cotranscription minimizes shortfall in protein complexes.
mBio. 2010 Sep 21;1(4):e00177-10. doi: 10.1128/mBio.00177-10.
3
Integration and visualization of systems biology data in context of the genome.
BMC Bioinformatics. 2010 Jul 19;11:382. doi: 10.1186/1471-2105-11-382.
5
Structural and operational complexity of the Geobacter sulfurreducens genome.
Genome Res. 2010 Sep;20(9):1304-11. doi: 10.1101/gr.107540.110. Epub 2010 Jun 30.
6
Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11050-5. doi: 10.1073/pnas.1003653107. Epub 2010 Jun 1.
8
FastTree 2--approximately maximum-likelihood trees for large alignments.
PLoS One. 2010 Mar 10;5(3):e9490. doi: 10.1371/journal.pone.0009490.
10
CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea.
Nat Rev Genet. 2010 Mar;11(3):181-90. doi: 10.1038/nrg2749.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验