Suppr超能文献

产甲烷菌中的蛋白复合物表明电子分支和电子从甲酸盐向异二硫键还原酶的传递。

Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.

机构信息

Department of Microbiology, National Science Foundation Integrative Graduate Education Research Traineeship Program in Astrobiology, University of Washington, Seattle, WA 98195, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11050-5. doi: 10.1073/pnas.1003653107. Epub 2010 Jun 1.

Abstract

In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579-591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F(420)-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H(2) or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H(2) via F(420)-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H(2) as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F(420)-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H(2), is closely integrated into the methanogenic pathway.

摘要

在产甲烷古菌中,产甲烷的最后一步生成甲烷和辅酶 M 与辅酶 B 的异双硫(CoM-S-S-CoB)。异双硫还原酶将这种异双硫还原为 HS-CoM 和 HS-CoB 是一个放能过程。Thauer 等人[Thauer 等人,2008 年《自然评论微生物学》579-591]最近提出,在氢营养型产甲烷菌中,异双硫还原的能量通过黄素基电子分叉为途径中最吸能的反应提供动力,该反应由甲酰甲烷呋喃脱氢酶催化。在这里,我们提供了证据表明这两个产甲烷步骤在物理上是相关的。我们从氢营养型产甲烷菌 Methanococcus maripaludis 中鉴定出一个包含异双硫还原酶、甲酰甲烷呋喃脱氢酶、F(420)-非还原型氢化酶和甲酸脱氢酶的蛋白质复合物。除了为能量守恒的电子分叉模型建立物理基础外,该复合物的组成还表明,H2 或甲酸(产甲烷的两种替代电子供体)都可以通过 F(420)-非还原型氢化酶或甲酸脱氢酶将电子传递给异双硫-H2。与使用 H2 作为中间体相比,电子从甲酸流向异双硫代表了产甲烷中以前未知的电子流途径。我们进一步通过构建缺乏 F(420)-非还原型氢化酶的突变体来测试这条途径是否存在。该突变体在甲酸中与野生型的生长相当,但在氢气中生长明显较慢。结果支持电子分叉模型,并表明甲酸与 H2 一样,紧密地整合到产甲烷途径中。

相似文献

1
Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11050-5. doi: 10.1073/pnas.1003653107. Epub 2010 Jun 1.
2
VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis.
J Bacteriol. 2013 Nov;195(22):5160-5. doi: 10.1128/JB.00895-13. Epub 2013 Sep 13.
4
Formate-Dependent Heterodisulfide Reduction in a Archaeon.
Appl Environ Microbiol. 2021 Feb 26;87(6). doi: 10.1128/AEM.02698-20.
5
Functionally redundant formate dehydrogenases enable formate-dependent growth in Methanococcus maripaludis.
J Biol Chem. 2024 Jan;300(1):105550. doi: 10.1016/j.jbc.2023.105550. Epub 2023 Dec 10.
6
Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis.
Appl Environ Microbiol. 2008 Nov;74(21):6584-90. doi: 10.1128/AEM.01455-08. Epub 2008 Sep 12.
7
Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15473-8. doi: 10.1073/pnas.1208779109. Epub 2012 Aug 7.
8
H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis.
mBio. 2013 Feb 26;4(2):e00062-13. doi: 10.1128/mBio.00062-13.
9
Random mutagenesis identifies factors involved in formate-dependent growth of the methanogenic archaeon Methanococcus maripaludis.
Mol Genet Genomics. 2013 Sep;288(9):413-24. doi: 10.1007/s00438-013-0756-6. Epub 2013 Jun 26.

引用本文的文献

1
Effects of CO and H limitations on .
Microbiol Spectr. 2025 Aug 6:e0035925. doi: 10.1128/spectrum.00359-25.
2
High-throughput cultivation and isolation of environmental anaerobes using selectively permeable hydrogel capsules.
ISME Commun. 2025 Jul 13;5(1):ycaf117. doi: 10.1093/ismeco/ycaf117. eCollection 2025 Jan.
3
Electron flow in hydrogenotrophic methanogens under nickel limitation.
Nature. 2025 Jul 2. doi: 10.1038/s41586-025-09229-y.
4
Mer overexpression in affects growth and methanogenesis during substrate adaptation.
Appl Environ Microbiol. 2025 May 21;91(5):e0067525. doi: 10.1128/aem.00675-25. Epub 2025 Apr 25.
5
Diversity and function of soluble heterodisulfide reductases in methane-metabolizing archaea.
Microbiol Spectr. 2025 Mar 25;13(5):e0323824. doi: 10.1128/spectrum.03238-24.
9
Minimal and hybrid hydrogenases are active from archaea.
Cell. 2024 Jun 20;187(13):3357-3372.e19. doi: 10.1016/j.cell.2024.05.032. Epub 2024 Jun 11.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
2
Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage.
Annu Rev Biochem. 2010;79:507-36. doi: 10.1146/annurev.biochem.030508.152103.
4
Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis.
Appl Environ Microbiol. 2008 Nov;74(21):6584-90. doi: 10.1128/AEM.01455-08. Epub 2008 Sep 12.
5
Methanogenic archaea: ecologically relevant differences in energy conservation.
Nat Rev Microbiol. 2008 Aug;6(8):579-91. doi: 10.1038/nrmicro1931. Epub 2008 Jun 30.
8
Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea.
Proc Natl Acad Sci U S A. 2007 May 22;104(21):8930-4. doi: 10.1073/pnas.0701157104. Epub 2007 May 14.
10
Regulation of nitrogenase by 2-oxoglutarate-reversible, direct binding of a PII-like nitrogen sensor protein to dinitrogenase.
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9779-84. doi: 10.1073/pnas.0602278103. Epub 2006 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验