Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA.
Ann Biomed Eng. 2011 Sep;39(9):2360-73. doi: 10.1007/s10439-011-0349-7. Epub 2011 Jul 13.
An MR image-based computational model of a murine KHT sarcoma is presented that allows the calculation of plasma fluid and solute transport within tissue. Such image-based models of solid tumors may be used to optimize patient-specific therapies. This model incorporates heterogeneous vasculature and tissue porosity to account for nonuniform perfusion of an MR-visible tracer, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was conducted following intravenous infusion of Gd-DTPA to provide 1 h of tracer-concentration distribution data within tissue. Early time points (19 min) were used to construct 3D K(trans) and porosity maps using a two-compartment model; tracer transport was predicted at later time points using a 3D porous media model. Model development involved selecting an arterial input function (AIF) and conducting a sensitivity analysis of model parameters (tissue, vascular, and initial estimation of solute concentration in plasma) to investigate the effects on transport for a specific tumor. The developed model was then used to predict transport in two additional tumors. The sensitivity analysis suggests that plasma fluid transport is more sensitive to parameter changes than solute transport due to the dominance of transvascular exchange. Gd-DTPA distribution was similar to experimental patterns, but differences in Gd-DTPA magnitude at later time points may result from inaccurate selection of AIF. Thus, accurate AIF estimation is important for later time point prediction of low molecular weight tracer or drug transport in smaller tumors.
本文提出了一种基于磁共振成像(MRI)的小鼠 KHT 肉瘤计算模型,可用于计算组织内的血浆流体和溶质传输。这种基于图像的实体瘤模型可用于优化患者特异性治疗方案。该模型纳入了异质血管和组织渗透性,以解释磁共振可见示踪剂钆二乙烯三胺五乙酸(Gd-DTPA)的非均灌注。静脉内注射 Gd-DTPA 后进行动态对比增强磁共振成像(DCE-MRI),以提供组织内示踪剂浓度分布数据 1 小时。使用两室模型在早期时间点(19 分钟)构建 3D K(trans)和渗透性图;使用 3D 多孔介质模型在后期时间点预测示踪剂传输。模型开发涉及选择动脉输入函数(AIF)和对模型参数(组织、血管和血浆中初始溶质浓度的估计)进行敏感性分析,以研究特定肿瘤对传输的影响。然后,将开发的模型用于预测另外两个肿瘤的传输。敏感性分析表明,由于跨血管交换的主导作用,与溶质传输相比,血浆流体传输对参数变化更敏感。Gd-DTPA 分布与实验模式相似,但后期时间点 Gd-DTPA 幅度的差异可能是由于 AIF 选择不准确所致。因此,对于较小肿瘤中低分子量示踪剂或药物传输的后期时间点预测,准确的 AIF 估计很重要。