Suppr超能文献

用于实体瘤中阿霉素递送和剂量优化的肿瘤索模型

A tumor cord model for doxorubicin delivery and dose optimization in solid tumors.

作者信息

Eikenberry Steffen

机构信息

Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, USA.

出版信息

Theor Biol Med Model. 2009 Aug 9;6:16. doi: 10.1186/1742-4682-6-16.

Abstract

BACKGROUND

Doxorubicin is a common anticancer agent used in the treatment of a number of neoplasms, with the lifetime dose limited due to the potential for cardiotoxocity. This has motivated efforts to develop optimal dosage regimes that maximize anti-tumor activity while minimizing cardiac toxicity, which is correlated with peak plasma concentration. Doxorubicin is characterized by poor penetration from tumoral vessels into the tumor mass, due to the highly irregular tumor vasculature. I model the delivery of a soluble drug from the vasculature to a solid tumor using a tumor cord model and examine the penetration of doxorubicin under different dosage regimes and tumor microenvironments.

METHODS

A coupled ODE-PDE model is employed where drug is transported from the vasculature into a tumor cord domain according to the principle of solute transport. Within the tumor cord, extracellular drug diffuses and saturable pharmacokinetics govern uptake and efflux by cancer cells. Cancer cell death is also determined as a function of peak intracellular drug concentration.

RESULTS

The model predicts that transport to the tumor cord from the vasculature is dominated by diffusive transport of free drug during the initial plasma drug distribution phase. I characterize the effect of all parameters describing the tumor microenvironment on drug delivery, and large intercapillary distance is predicted to be a major barrier to drug delivery. Comparing continuous drug infusion with bolus injection shows that the optimum infusion time depends upon the drug dose, with bolus injection best for low-dose therapy but short infusions better for high doses. Simulations of multiple treatments suggest that additional treatments have similar efficacy in terms of cell mortality, but drug penetration is limited. Moreover, fractionating a single large dose into several smaller doses slightly improves anti-tumor efficacy.

CONCLUSION

Drug infusion time has a significant effect on the spatial profile of cell mortality within tumor cord systems. Therefore, extending infusion times (up to 2 hours) and fractionating large doses are two strategies that may preserve or increase anti-tumor activity and reduce cardiotoxicity by decreasing peak plasma concentration. However, even under optimal conditions, doxorubicin may have limited delivery into advanced solid tumors.

摘要

背景

阿霉素是一种常用于治疗多种肿瘤的抗癌药物,由于其潜在的心脏毒性,其终身剂量受到限制。这促使人们努力开发最佳给药方案,以在使心脏毒性最小化的同时最大化抗肿瘤活性,而心脏毒性与血浆峰值浓度相关。由于肿瘤血管高度不规则,阿霉素的特点是从肿瘤血管向肿瘤块的渗透较差。我使用肿瘤条索模型模拟可溶性药物从血管向实体瘤的递送,并研究在不同给药方案和肿瘤微环境下阿霉素的渗透情况。

方法

采用一个耦合的常微分方程 - 偏微分方程模型,其中药物根据溶质转运原理从血管输送到肿瘤条索区域。在肿瘤条索内,细胞外药物扩散,可饱和的药代动力学控制癌细胞的摄取和流出。癌细胞死亡也被确定为细胞内药物峰值浓度的函数。

结果

该模型预测,在初始血浆药物分布阶段,从血管到肿瘤条索的转运主要由游离药物的扩散转运主导。我描述了所有描述肿瘤微环境的参数对药物递送的影响,预计大的毛细血管间距是药物递送的主要障碍。将持续药物输注与推注注射进行比较表明,最佳输注时间取决于药物剂量,推注注射最适合低剂量治疗,而短时间输注更适合高剂量。多次治疗的模拟表明,额外的治疗在细胞死亡率方面具有相似的疗效,但药物渗透有限。此外,将单次大剂量分成几个较小剂量可略微提高抗肿瘤疗效。

结论

药物输注时间对肿瘤条索系统内细胞死亡的空间分布有显著影响。因此,延长输注时间(长达2小时)和分拆大剂量是两种可能通过降低血浆峰值浓度来保持或增加抗肿瘤活性并降低心脏毒性的策略。然而,即使在最佳条件下,阿霉素对晚期实体瘤的递送可能也有限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b3a/2736154/5d258d8ee3fd/1742-4682-6-16-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验