Camacho-Gomez Daniel, Borau Carlos, Garcia-Aznar Jose Manuel, Gomez-Benito Maria Jose, Girolami Mark, Perez Maria Angeles
Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering. Research (I3A), University of Zaragoza, Zaragoza, Spain.
Department of Engineering, University of Cambridge, Cambridge, UK.
NPJ Digit Med. 2025 Jul 29;8(1):485. doi: 10.1038/s41746-025-01890-x.
Existing prostate cancer monitoring methods, reliant on prostate-specific antigen (PSA) measurements in blood tests often fail to detect tumor growth. We develop a computational framework to reconstruct tumor growth from the PSA integrating physics-based modeling and machine learning in digital twins. The physics-based model considers PSA secretion and flux from tissue to blood, depending on local vascularity. This model is enhanced by deep learning, which regulates tumor growth dynamics through the patient's PSA blood tests and 3D spatial interactions of physiological variables of the digital twin. We showcase our framework by reconstructing tumor growth in real patients over 2.5 years from diagnosis, with tumor volume relative errors ranging from 0.8% to 12.28%. Additionally, our results reveal scenarios of tumor growth despite no significant rise in PSA levels. Therefore, our framework serves as a promising tool for prostate cancer monitoring, supporting the advancement of personalized monitoring protocols.
现有的前列腺癌监测方法依赖于血液检测中的前列腺特异性抗原(PSA)测量,往往无法检测到肿瘤生长。我们开发了一个计算框架,通过在数字孪生中整合基于物理的建模和机器学习,从PSA重建肿瘤生长。基于物理的模型考虑了PSA从组织到血液的分泌和通量,这取决于局部血管生成情况。该模型通过深度学习得到增强,深度学习通过患者的PSA血液检测以及数字孪生生理变量的三维空间相互作用来调节肿瘤生长动态。我们通过重建从诊断开始2.5年里真实患者的肿瘤生长情况来展示我们的框架,肿瘤体积相对误差范围为0.8%至12.28%。此外,我们的结果揭示了尽管PSA水平没有显著升高,但肿瘤仍在生长的情况。因此,我们的框架是前列腺癌监测的一个有前景的工具,有助于推进个性化监测方案。