Suppr超能文献

蛋白质-DNA 复合物中离子相互作用的寡聚赖氨酸模型的理论评估。

Theoretical assessment of the oligolysine model for ionic interactions in protein-DNA complexes.

机构信息

Institute of Molecular Biophysics+, Florida State University, Tallahassee, Florida 32306, USA.

出版信息

J Phys Chem B. 2011 Aug 18;115(32):9864-72. doi: 10.1021/jp204915y. Epub 2011 Jul 26.

Abstract

The observed salt dependence of charged ligand binding to polyelectrolytes, such as proteins to DNA or antithrombin to heparin, is often interpreted by means of the "oligolysine model." We review this model as derived entirely within the framework of the counterion condensation theory of polyelectrolytes with no introduction of outside assumptions. We update its comparison with experimental data on the structurally simple systems for which it was originally intended. We then compute the salt dependence of the binding free energy for a variety of protein-DNA complexes with nonlinear Poisson-Boltzmann (NLPB) simulation methods. The results of the NLPB calculations confirm the central prediction of the oligolysine model that the net charge density of DNA remains invariant to protein binding. Specifically, when a cationic protein residue penetrates the layer of counterions condensed on DNA, a counterion is released to bulk solution, and when an anionic protein residue penetrates the condensed counterion layer, an additional counterion is condensed from bulk solution. We also conclude, however, that the cumulative effect of charged protein residues distant from the binding interface makes a significant contribution to the salt dependence of binding, an observation not accommodated by the oligolysine model.

摘要

观察到带电荷配体与聚电解质(如蛋白质与 DNA 或抗凝血酶与肝素)的结合依赖于盐,这种现象通常可以用“寡聚赖氨酸模型”来解释。我们对该模型进行了综述,它完全是在聚电解质的抗衡离子凝聚理论框架内推导出来的,没有引入外部假设。我们更新了它与最初旨在用于的结构简单系统的实验数据的比较。然后,我们使用非线性泊松-玻尔兹曼(NLPB)模拟方法计算了各种蛋白质-DNA 复合物的结合自由能对盐的依赖性。NLPB 计算结果证实了寡聚赖氨酸模型的核心预测,即 DNA 的净电荷密度在蛋白质结合时保持不变。具体来说,当带正电荷的蛋白质残基穿透凝聚在 DNA 上的抗衡离子层时,一个抗衡离子会被释放到本体溶液中,而当带负电荷的蛋白质残基穿透凝聚的抗衡离子层时,会从本体溶液中额外凝聚一个抗衡离子。然而,我们还得出结论,远离结合界面的带电蛋白质残基的累积效应对结合的盐依赖性有显著贡献,这一观察结果无法用寡聚赖氨酸模型来解释。

相似文献

1
Theoretical assessment of the oligolysine model for ionic interactions in protein-DNA complexes.
J Phys Chem B. 2011 Aug 18;115(32):9864-72. doi: 10.1021/jp204915y. Epub 2011 Jul 26.
2
Counterion condensation theory of attraction between like charges in the absence of multivalent counterions.
Eur Phys J E Soft Matter. 2011 Dec;34(12):1-18. doi: 10.1140/epje/i2011-11132-6. Epub 2011 Dec 23.
3
Counterion condensation theory for finite polyelectrolyte and salt concentrations.
J Phys Condens Matter. 2022 Jun 29;34(35). doi: 10.1088/1361-648X/ac792e.
4
Dynamics of Ionic Interactions at Protein-Nucleic Acid Interfaces.
Acc Chem Res. 2020 Sep 15;53(9):1802-1810. doi: 10.1021/acs.accounts.0c00212. Epub 2020 Aug 26.
5
Monte Carlo and Poisson-Boltzmann calculations of the fraction of counterions bound to DNA.
Biopolymers. 1994 Feb;34(2):227-37. doi: 10.1002/bip.360340209.
7
The contribution of transient counterion imbalances to DNA bending fluctuations.
Biophys J. 2006 May 1;90(9):3208-15. doi: 10.1529/biophysj.105.078865. Epub 2006 Feb 3.
8
Salt effects on ligand-DNA binding. Minor groove binding antibiotics.
J Mol Biol. 1994 Apr 29;238(2):245-63. doi: 10.1006/jmbi.1994.1285.
9
Electrostatic free energy of the DNA double helix in counterion condensation theory.
Biophys Chem. 2002 Dec 10;101-102:461-73. doi: 10.1016/s0301-4622(02)00162-x.
10
Thermodynamic extent of counterion release upon binding oligolysines to single-stranded nucleic acids.
Proc Natl Acad Sci U S A. 1990 Apr;87(8):3142-6. doi: 10.1073/pnas.87.8.3142.

引用本文的文献

2
Sequence Properties of An Intramolecular Interaction That Inhibits p53 DNA Binding.
Biomolecules. 2022 Oct 25;12(11):1558. doi: 10.3390/biom12111558.
3
Multivalent Ion-Mediated Attraction between Like-Charged Colloidal Particles: Nonmonotonic Dependence on the Particle Charge.
ACS Omega. 2021 Apr 5;6(14):9876-9886. doi: 10.1021/acsomega.1c00613. eCollection 2021 Apr 13.
4
Impact of Self-Association on the Architectural Properties of Bacterial Nucleoid Proteins.
Biophys J. 2021 Jan 19;120(2):370-378. doi: 10.1016/j.bpj.2020.12.006. Epub 2020 Dec 17.
5
Dynamics of Ionic Interactions at Protein-Nucleic Acid Interfaces.
Acc Chem Res. 2020 Sep 15;53(9):1802-1810. doi: 10.1021/acs.accounts.0c00212. Epub 2020 Aug 26.
6
Role of Salt Valency in the Switch of H-NS Proteins between DNA-Bridging and DNA-Stiffening Modes.
Biophys J. 2018 May 22;114(10):2317-2325. doi: 10.1016/j.bpj.2018.02.030. Epub 2018 Mar 23.
10
Problems of robustness in Poisson-Boltzmann binding free energies.
J Chem Theory Comput. 2015 Feb 10;11(2):705-12. doi: 10.1021/ct5005017.

本文引用的文献

1
Electrostatic interactions in biological DNA-related systems.
Phys Chem Chem Phys. 2011 Jun 7;13(21):9942-68. doi: 10.1039/c0cp02796k. Epub 2011 Mar 23.
3
Glycosaminoglycans as polyelectrolytes.
Adv Colloid Interface Sci. 2010 Jul 12;158(1-2):119-29. doi: 10.1016/j.cis.2010.03.001. Epub 2010 Mar 20.
6
Measuring inter-DNA potentials in solution.
Phys Rev Lett. 2006 Apr 7;96(13):138101. doi: 10.1103/PhysRevLett.96.138101. Epub 2006 Apr 3.
8
Annotating nucleic acid-binding function based on protein structure.
J Mol Biol. 2003 Feb 28;326(4):1065-79. doi: 10.1016/s0022-2836(03)00031-7.
10
Heat capacity effects on the melting of DNA. 1. General aspects.
Biophys J. 1999 Dec;77(6):3242-51. doi: 10.1016/S0006-3495(99)77155-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验