Department of Physics, Faculty of Natural Sciences, National University of La Pampa, Santa Rosa, La Pampa, Argentina.
J Phys Condens Matter. 2022 Jun 29;34(35). doi: 10.1088/1361-648X/ac792e.
In the present work we analyze the physical fundamentals of Manning's counterion condensation using his charged line model in a simple salt solution. We extend the theory for the cases of finite saline concentration and polymeric concentration tending to zero and the case of both finite concentrations. To find the equilibrium between the phases of free and condensed counterions, besides minimizing the free energy, we deduce an auxiliary equation to determine the two characteristic parameters of the theory, the fraction of condensed counterions and the volume of condensation. We compare the obtained results in the present work for only one infinite charged line with the ones of counterion condensation theory by Schurr and Fujimoto. We find that the linear density of critical charge depends on the concentration of added salt and takes values higher than one, instead of the unitary value predicted by Manning. We obtain the equations by the activity and osmotic coefficients in function of the critical charge density. We compare them with the corresponding equations by Manning for these parameters. We extend the counterion condensation theory to solutions of linear polyelectrolytes for finite saline and polymeric concentrations using a cell model. We modify the electrostatic contribution to the Gibbs energy adding, to the traditional one calculated by Manning, the energy excess due to the macroion present in a cylindrical cell. We apply the theory to obtain the osmotic coefficient and we compare our results with experimental data of DNA osmotic coefficient and with theoretical adjustment using the Poisson-Boltzmann equation.
在本工作中,我们使用曼宁的带电线模型在简单盐溶液中分析曼宁抗衡离子凝聚的物理基础。我们将理论扩展到有限盐浓度和趋于零的聚合浓度的情况以及两种浓度都有限的情况。为了找到自由和凝聚抗衡离子相之间的平衡,除了最小化自由能之外,我们还推导出一个辅助方程来确定理论的两个特征参数,即凝聚抗衡离子的分数和凝聚体积。我们将本工作中仅一个无限带电线的结果与 Schurr 和 Fujimoto 的抗衡离子凝聚理论的结果进行比较。我们发现,临界电荷的线密度取决于添加盐的浓度,并取高于 1 的值,而不是曼宁预测的单位值。我们通过活性和渗透压系数得到了临界电荷密度的函数方程。我们将它们与曼宁的这些参数的对应方程进行了比较。我们使用细胞模型将抗衡离子凝聚理论扩展到具有有限盐和聚合浓度的线性聚电解质溶液中。我们通过在传统的由曼宁计算的静电贡献中添加由于存在于圆柱形细胞中的大分子引起的能量过剩,来修改 Gibbs 能量的静电贡献。我们应用该理论来获得渗透压系数,并将我们的结果与 DNA 渗透压系数的实验数据以及使用泊松-玻尔兹曼方程的理论调整进行比较。