Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany.
Nature. 2011 Jul 13;475(7355):235-9. doi: 10.1038/nature10216.
Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult, because of the nonlinear interaction of excitation waves in a heterogeneous anatomical substrate. In the absence of a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation. Here we establish the relationship between the response of the tissue to an electric field and the spatial distribution of heterogeneities in the scale-free coronary vascular structure. We show that in response to a pulsed electric field, E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E) and a characteristic time, τ, for tissue depolarization that obeys the power law τ ∝ E(α). These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore, efficient termination of fibrillation. Using this control strategy, we demonstrate low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques.
控制危及生命的心脏心律失常(如颤动)的复杂时空动力学极其困难,因为在异质解剖基质中激发波的非线性相互作用。在没有更好策略的情况下,强烈的、全局重置的电冲击仍然是治疗心脏颤动的唯一可靠方法。在这里,我们建立了组织对电场的响应与无标度冠状血管结构中的异质分布之间的关系。我们表明,在脉冲电场 E 的作用下,这些异质结构作为产生壁内电的核化位点波具有源密度 ρ(E)和组织去极化的特征时间 τ,τ 遵循幂律 τ ∝ E(α)。这些壁内波源允许在驱动复杂颤动动力学的电活动涡旋的核心附近靶向电湍流。我们在体外表明,同时直接访问多个涡核会导致心脏组织的快速同步,从而有效地终止颤动。我们使用这种控制策略在体内演示了低能量终止颤动。我们的结果为理解异质可兴奋介质中时空混沌控制的机制和动力学提供了新的见解,并为替代的、拯救生命的低能量除颤技术提供了新的研究视角。