Suppr超能文献

极性反转可缩短兔心室舒张期电场刺激时的激活时间:对机制的见解

Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms.

作者信息

Maleckar M M, Woods M C, Sidorov V Y, Holcomb M R, Mashburn D N, Wikswo J P, Trayanova N A

机构信息

Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1626-33. doi: 10.1152/ajpheart.00706.2008. Epub 2008 Aug 15.

Abstract

To fully characterize the mechanisms of defibrillation, it is necessary to understand the response, within the three-dimensional (3D) volume of the ventricles, to shocks given in diastole. Studies that have examined diastolic responses conducted measurements on the epicardium or on a transmural surface of the left ventricular (LV) wall only. The goal of this study was to use optical imaging experiments and 3D bidomain simulations, including a model of optical mapping, to ascertain the shock-induced virtual electrode and activation patterns throughout the rabbit ventricles following diastolic shocks. We tested the hypothesis that the locations of shock-induced regions of hyperpolarization govern the different diastolic activation patterns for shocks of reversed polarity. In model and experiment, uniform-field monophasic shocks of reversed polarities (cathode over the right ventricle is RV-, reverse polarity is LV-) were applied to the ventricles in diastole. Experiments and simulations revealed that RV- shocks resulted in longer activation times compared with LV- shocks of the same strength. 3D simulations demonstrated that RV- shocks induced a greater volume of hyperpolarization at shock end compared with LV- shocks; most of these hyperpolarized regions were located in the LV. The results of this study indicate that ventricular geometry plays an important role in both the location and size of the shock-induced virtual anodes that determine activation delay during the shock and subsequently affect shock-induced propagation. If regions of hyperpolarization that develop during the shock are sufficiently large, activation delay may persist until shock end.

摘要

为了全面描述除颤机制,有必要了解在心室的三维(3D)空间内,对舒张期电击的反应。已开展的关于舒张期反应的研究仅在心脏外膜或左心室(LV)壁的透壁表面进行测量。本研究的目的是利用光学成像实验和三维双域模拟(包括光学标测模型),确定舒张期电击后兔心室中电击诱发的虚拟电极和激活模式。我们检验了以下假设:电击诱发的超极化区域的位置决定了相反极性电击的不同舒张期激活模式。在模型和实验中,将相反极性的均匀场单相电击(右心室上方为阴极是RV -,相反极性为LV -)应用于舒张期的心室。实验和模拟结果显示,与相同强度的LV - 电击相比,RV - 电击导致更长的激活时间。三维模拟表明,与LV - 电击相比,RV - 电击在电击结束时诱发更大体积的超极化;这些超极化区域大多位于左心室。本研究结果表明,心室几何形状在电击诱发的虚拟阳极的位置和大小方面起着重要作用,这些虚拟阳极决定了电击期间的激活延迟,并随后影响电击诱发的传导。如果电击期间产生的超极化区域足够大,激活延迟可能会持续到电击结束。

相似文献

1
Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms.
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1626-33. doi: 10.1152/ajpheart.00706.2008. Epub 2008 Aug 15.
2
Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks.
Circ Res. 2005 Jul 22;97(2):168-75. doi: 10.1161/01.RES.0000174429.00987.17. Epub 2005 Jun 23.
4
Diastolic field stimulation: the role of shock duration in epicardial activation and propagation.
Biophys J. 2013 Jul 16;105(2):523-32. doi: 10.1016/j.bpj.2013.06.009.
5
Optical mapping of transmural activation induced by electrical shocks in isolated left ventricular wall wedge preparations.
J Cardiovasc Electrophysiol. 2003 Nov;14(11):1215-22. doi: 10.1046/j.1540-8167.2003.03188.x.
9
Virtual electrode polarization in the far field: implications for external defibrillation.
Am J Physiol Heart Circ Physiol. 2000 Sep;279(3):H1055-70. doi: 10.1152/ajpheart.2000.279.3.H1055.

引用本文的文献

1
Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia.
Prog Biophys Mol Biol. 2016 Jul;121(2):185-94. doi: 10.1016/j.pbiomolbio.2016.06.004. Epub 2016 Jun 19.
2
Electrical Pacing of Cardiac Tissue Including Potassium Inward Rectification.
PLoS One. 2015 Jun 9;10(6):e0127837. doi: 10.1371/journal.pone.0127837. eCollection 2015.
3
New insights into defibrillation of the heart from realistic simulation studies.
Europace. 2014 May;16(5):705-13. doi: 10.1093/europace/eut330.
4
Diastolic field stimulation: the role of shock duration in epicardial activation and propagation.
Biophys J. 2013 Jul 16;105(2):523-32. doi: 10.1016/j.bpj.2013.06.009.
5
Continuous-waveform constant-current isolated physiological stimulator.
Rev Sci Instrum. 2012 Apr;83(4):044303. doi: 10.1063/1.3700977.
6
Verification of cardiac tissue electrophysiology simulators using an N-version benchmark.
Philos Trans A Math Phys Eng Sci. 2011 Nov 13;369(1954):4331-51. doi: 10.1098/rsta.2011.0139.
7
Low-energy control of electrical turbulence in the heart.
Nature. 2011 Jul 13;475(7355):235-9. doi: 10.1038/nature10216.
8
Cardiovascular disease: several small shocks beat one big one.
Nature. 2011 Jul 13;475(7355):181-2. doi: 10.1038/475181a.
9
Atrial defibrillation voltage: falling to a new low.
Heart Rhythm. 2011 Jan;8(1):109-10. doi: 10.1016/j.hrthm.2010.10.037. Epub 2010 Oct 29.
10
Probing field-induced tissue polarization using transillumination fluorescent imaging.
Biophys J. 2010 Oct 6;99(7):2058-66. doi: 10.1016/j.bpj.2010.07.057.

本文引用的文献

1
Photon density measured over a cut surface: implications for optical mapping of the heart.
IEEE Trans Biomed Eng. 2008 Aug;55(8):2102-4. doi: 10.1109/TBME.2008.925293.
2
Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window.
Circ Res. 2008 Mar 28;102(6):737-45. doi: 10.1161/CIRCRESAHA.107.168112. Epub 2008 Jan 24.
3
Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions.
Biophys J. 2008 Mar 1;94(5):1904-15. doi: 10.1529/biophysj.107.121343. Epub 2007 Nov 9.
4
Photon scattering effects in optical mapping of propagation and arrhythmogenesis in the heart.
J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S75-80. doi: 10.1016/j.jelectrocard.2007.06.020.
5
A high-voltage cardiac stimulator for field shocks of a whole heart in a bath.
Rev Sci Instrum. 2007 Oct;78(10):104302. doi: 10.1063/1.2796832.
6
The role of photon scattering in optical signal distortion during arrhythmia and defibrillation.
Biophys J. 2007 Nov 15;93(10):3714-26. doi: 10.1529/biophysj.107.110981.
7
Experimental evidence of improved transthoracic defibrillation with electroporation-enhancing pulses.
IEEE Trans Biomed Eng. 2006 Oct;53(10):1901-10. doi: 10.1109/TBME.2006.881787.
9
Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping.
Biophys J. 2006 Apr 15;90(8):2938-45. doi: 10.1529/biophysj.105.076505. Epub 2006 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验