Suppr超能文献

通过调节共伴侣蛋白 GroES 来刺激单个环 GroEL 变体的底物折叠活性。

Stimulating the substrate folding activity of a single ring GroEL variant by modulating the cochaperonin GroES.

机构信息

Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405.

Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405.

出版信息

J Biol Chem. 2011 Sep 2;286(35):30401-30408. doi: 10.1074/jbc.M111.255935. Epub 2011 Jul 10.

Abstract

In mediating protein folding, chaperonin GroEL and cochaperonin GroES form an enclosed chamber for substrate proteins in an ATP-dependent manner. The essential role of the double ring assembly of GroEL is demonstrated by the functional deficiency of the single ring GroEL(SR). The GroEL(SR)-GroES is highly stable with minimal ATPase activity. To restore the ATP cycle and the turnover of the folding chamber, we sought to weaken the GroEL(SR)-GroES interaction systematically by concatenating seven copies of groES to generate groES(7). GroES Ile-25, Val-26, and Leu-27, residues on the GroEL-GroES interface, were substituted with Asp on different groES modules of groES(7). GroES(7) variants activate ATP activity of GroEL(SR), but only some restore the substrate folding function of GroEL(SR), indicating a direct role of GroES in facilitating substrate folding through its dynamics with GroEL. Active GroEL(SR)-GroES(7) systems may resemble mammalian mitochondrial chaperonin systems.

摘要

在介导蛋白质折叠过程中,伴侣蛋白 GroEL 和共伴侣蛋白 GroES 以 ATP 依赖的方式形成一个封闭的腔室来容纳底物蛋白。GroEL 双环组装的重要作用是由单环 GroEL(SR)的功能缺陷证明的。GroEL(SR)-GroES 具有高度稳定性和最小的 ATPase 活性。为了恢复 ATP 循环和折叠腔室的周转率,我们试图通过串联 7 个 groES 拷贝来系统地削弱 GroEL(SR)-GroES 相互作用,从而生成 groES(7)。GroES 上位于 GroEL-GroES 界面上的 Ile-25、Val-26 和 Leu-27 残基被 groES(7)中的不同 groES 模块上的 Asp 取代。GroES(7)变体激活 GroEL(SR)的 ATP 活性,但只有一些能够恢复 GroEL(SR)的底物折叠功能,这表明 GroES 通过与 GroEL 的动态相互作用直接促进底物折叠。活性 GroEL(SR)-GroES(7)系统可能类似于哺乳动物线粒体伴侣蛋白系统。

相似文献

1
Stimulating the substrate folding activity of a single ring GroEL variant by modulating the cochaperonin GroES.
J Biol Chem. 2011 Sep 2;286(35):30401-30408. doi: 10.1074/jbc.M111.255935. Epub 2011 Jul 10.
2
Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
Biochem Biophys Res Commun. 2015 Oct 9;466(1):15-20. doi: 10.1016/j.bbrc.2015.08.034. Epub 2015 Aug 11.
4
Determination of the number of active GroES subunits in the fused heptamer GroES required for interactions with GroEL.
J Biol Chem. 2008 Jun 27;283(26):18385-92. doi: 10.1074/jbc.M709825200. Epub 2008 Apr 22.
5
Leu309 plays a critical role in the encapsulation of substrate protein into the internal cavity of GroEL.
J Biol Chem. 2006 Jan 13;281(2):962-7. doi: 10.1074/jbc.M506298200. Epub 2005 Oct 20.
6
Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation.
J Biol Chem. 2004 Jan 9;279(2):1090-9. doi: 10.1074/jbc.M310914200. Epub 2003 Oct 23.
7
Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity.
J Mol Biol. 2010 Mar 12;396(5):1271-83. doi: 10.1016/j.jmb.2009.11.074. Epub 2009 Dec 16.
8
9
Protein folding assisted by the GroEL/GroES chaperonin system.
Biochemistry (Mosc). 1998 Apr;63(4):374-81.
10

引用本文的文献

3
Local Flexibility of a New Single-Ring Chaperonin Encoded by Bacteriophage AR9 .
Biomedicines. 2022 Sep 21;10(10):2347. doi: 10.3390/biomedicines10102347.
4
Allosteric differences dictate GroEL complementation of E. coli.
FASEB J. 2022 Mar;36(3):e22198. doi: 10.1096/fj.202101708RR.
5
Structural basis for the structural dynamics of human mitochondrial chaperonin mHsp60.
Sci Rep. 2021 Jul 20;11(1):14809. doi: 10.1038/s41598-021-94236-y.
6
Complex Destabilization in the Mitochondrial Chaperonin Hsp60 Leads to Disease.
Front Mol Biosci. 2020 Jul 14;7:159. doi: 10.3389/fmolb.2020.00159. eCollection 2020.
7
Infection-driven activation of transglutaminase 2 boosts glucose uptake and hexosamine biosynthesis in epithelial cells.
EMBO J. 2020 Apr 15;39(8):e102166. doi: 10.15252/embj.2019102166. Epub 2020 Mar 5.
8
Single-Ring Intermediates Are Essential for Some Chaperonins.
Front Mol Biosci. 2018 Apr 27;5:42. doi: 10.3389/fmolb.2018.00042. eCollection 2018.
10
Biochemical and Genetic Analysis of the Chlamydia GroEL Chaperonins.
J Bacteriol. 2017 May 25;199(12). doi: 10.1128/JB.00844-16. Print 2017 Jun 15.

本文引用的文献

1
Analysis of peptides and proteins in their binding to GroEL.
J Pept Sci. 2010 Dec;16(12):693-700. doi: 10.1002/psc.1288.
2
Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity.
J Mol Biol. 2010 Mar 12;396(5):1271-83. doi: 10.1016/j.jmb.2009.11.074. Epub 2009 Dec 16.
3
Characterisation of mutations in GroES that allow GroEL to function as a single ring.
FEBS Lett. 2009 Jul 21;583(14):2365-71. doi: 10.1016/j.febslet.2009.06.027. Epub 2009 Jun 21.
5
Determination of the number of active GroES subunits in the fused heptamer GroES required for interactions with GroEL.
J Biol Chem. 2008 Jun 27;283(26):18385-92. doi: 10.1074/jbc.M709825200. Epub 2008 Apr 22.
6
Structural stability of covalently linked GroES heptamer: advantages in the formation of oligomeric structure.
J Mol Biol. 2007 Apr 6;367(4):1171-85. doi: 10.1016/j.jmb.2007.01.037. Epub 2007 Jan 20.
7
GroEL-mediated protein folding: making the impossible, possible.
Crit Rev Biochem Mol Biol. 2006 Jul-Aug;41(4):211-39. doi: 10.1080/10409230600760382.
8
Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE.
J Biol Chem. 2006 Jul 28;281(30):21266-21275. doi: 10.1074/jbc.M601605200. Epub 2006 May 9.
9
GroEL-GroES-mediated protein folding.
Chem Rev. 2006 May;106(5):1917-30. doi: 10.1021/cr040435v.
10
GroEL mediates protein folding with a two successive timer mechanism.
Mol Cell. 2004 May 21;14(4):423-34. doi: 10.1016/s1097-2765(04)00261-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验