Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Dr., Bloomington, IN, 47405, USA.
Sci Rep. 2021 Jul 20;11(1):14809. doi: 10.1038/s41598-021-94236-y.
Human mitochondrial chaperonin mHsp60 is essential for mitochondrial function by assisting folding of mitochondrial proteins. Unlike the double-ring bacterial GroEL, mHsp60 exists as a heptameric ring that is unstable and dissociates to subunits. The structural dynamics has been implicated for a unique mechanism of mHsp60. We purified active heptameric mHsp60, and determined a cryo-EM structure of mHsp60 heptamer at 3.4 Å. Of the three domains, the equatorial domains contribute most to the inter-subunit interactions, which include a four-stranded β sheet. Our structural comparison with GroEL shows that mHsp60 contains several unique sequences that directly decrease the sidechain interactions around the β sheet and indirectly shorten β strands by disengaging the backbones of the flanking residues from hydrogen bonding in the β strand conformation. The decreased inter-subunit interactions result in a small inter-subunit interface in mHsp60 compared to GroEL, providing a structural basis for the dynamics of mHsp60 subunit association. Importantly, the unique sequences are conserved among higher eukaryotic mitochondrial chaperonins, suggesting the importance of structural dynamics for eukaryotic chaperonins. Our structural comparison with the single-ring mHsp60-mHsp10 shows that upon mHsp10 binding the shortened inter-subunit β sheet is restored and the overall inter-subunit interface of mHsp60 increases drastically. Our structural basis for the mHsp10 induced stabilization of mHsp60 subunit interaction is consistent with the literature that mHsp10 stabilizes mHsp60 quaternary structure. Together, our studies provide structural bases for structural dynamics of the mHsp60 heptamer and for the stabilizing effect of mHsp10 on mHsp60 subunit association.
人线粒体伴侣蛋白 mHsp60 通过协助线粒体蛋白折叠对于线粒体功能至关重要。与双环细菌 GroEL 不同,mHsp60 以不稳定的七聚体环形式存在并解离为亚基。结构动力学与 mHsp60 的独特机制有关。我们纯化了活性七聚体 mHsp60,并在 3.4 Å 分辨率下确定了 mHsp60 七聚体的 cryo-EM 结构。在三个结构域中,赤道结构域对亚基间相互作用贡献最大,其中包括一个四链β片层。我们与 GroEL 的结构比较表明,mHsp60 包含几个独特的序列,这些序列直接减少β片层周围侧链相互作用,并通过使侧翼残基的骨架脱离β链构象中的氢键,间接缩短β链。与 GroEL 相比,mHsp60 中减少的亚基间相互作用导致亚基间界面较小,为 mHsp60 亚基缔合的动力学提供了结构基础。重要的是,这些独特的序列在高等真核生物线粒体伴侣蛋白中保守,表明结构动力学对于真核伴侣蛋白的重要性。我们与单环 mHsp60-mHsp10 的结构比较表明,mHsp10 结合后缩短的亚基间β片层得以恢复,mHsp60 的整体亚基间界面急剧增加。我们对 mHsp10 诱导的 mHsp60 亚基相互作用稳定的结构基础与文献一致,即 mHsp10 稳定 mHsp60 四级结构。总之,我们的研究为 mHsp60 七聚体的结构动力学和 mHsp10 对 mHsp60 亚基缔合的稳定作用提供了结构基础。