Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
J Am Chem Soc. 2011 Aug 24;133(33):12906-9. doi: 10.1021/ja202268t. Epub 2011 Jul 28.
The helical and tubular structures self-assembled from proteins have inspired scientists to design synthetic building blocks that can be "polymerized" into supramolecular polymers through coordinated noncovalent interactions. However, cooperative supramolecular polymerization from large, synthetic macromolecules remains a challenge because of the difficulty of controlling the structure and interactions of macromolecular monomers. Herein we report the synthesis of polypeptide-grafted comb polymers and the use of their tunable secondary interactions in solution to achieve controlled supramolecular polymerization. The resulting tubular supramolecular structures, with external diameters of hundreds of nanometers and lengths of tens of micrometers, are stable and resemble to some extent biological superstructures assembled from proteins. This study shows that highly specific intermolecular interactions between macromolecular monomers can enable the cooperative growth of supramolecular polymers. The general applicability of this strategy was demonstrated by carrying out supramolecular polymerization from gold nanoparticles grafted with the same polypeptides on the surface.
从蛋白质自组装而成的螺旋和管状结构启发科学家们设计了可以通过配位非共价相互作用“聚合”成超分子聚合物的合成构建块。然而,由于难以控制大分子单体的结构和相互作用,因此从大型合成大分子进行协同超分子聚合仍然是一个挑战。在此,我们报告了接枝梳状聚合物的多肽的合成,并在溶液中利用其可调谐的二级相互作用来实现可控的超分子聚合。所得管状超分子结构的外径为数百纳米,长度为数十微米,具有一定的稳定性,在某种程度上类似于由蛋白质组装而成的生物超结构。该研究表明,大分子单体之间的高度特异性分子间相互作用可以使超分子聚合物进行协同生长。通过在表面接枝相同多肽的金纳米粒子进行超分子聚合证明了该策略的普遍适用性。