Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Crete 71110, Greece.
J Biomech. 2011 Sep 2;44(13):2453-60. doi: 10.1016/j.jbiomech.2011.06.024. Epub 2011 Jul 16.
Hemodynamic conditions in large arteries are significantly affected by the interaction of the pulsatile blood flow with the distensible arterial wall. A numerical procedure for solving the fluid-structure interaction problem encountered in cardiovascular flows is presented. We consider a patient-specific carotid bifurcation geometry, obtained from 3D reconstruction of in vivo acquired tomography images, which yields a geometrical representation of the artery corresponding to its pressurized state. To recover the geometry of the artery in its zero-pressure state which is required for a fluid-structure interaction simulation we utilize inverse finite elastostatics. Time-dependent flow simulations with in vivo measured inflow volume flow rate in the 3D undeformed artery are performed through the finite element method. The coupled-momentum method for fluid-structure interaction is adopted to incorporate the influence of wall compliance in the numerical computation of the time varying flow domain. To demonstrate the importance in recovering the zero-pressure state of the artery in hemodynamic simulations we compute the time varying flow field with compliant walls for the original and the zero-pressure state corrected geometric configurations of the carotid bifurcation. The most important resulting effects in the hemodynamic environment are evaluated. Our results show a significant change in the wall shear stress distribution and the spatiotemporal extent of the recirculation regions.
大动脉中的血液动力学条件受到脉动血流与可扩张动脉壁相互作用的显著影响。本文提出了一种用于解决心血管流动中遇到的流固耦合问题的数值方法。我们考虑了一个特定于患者的颈动脉分叉几何形状,该形状是从体内获取的计算机断层扫描图像的三维重建中获得的,它对应于动脉的加压状态的几何表示。为了恢复零压力状态下的动脉几何形状,我们利用逆有限弹性力学进行了零压力状态下的几何形状恢复。通过有限元方法对 3D 未变形动脉中的体内测量的流入体积流量进行了时变流动模拟。采用耦合动量法来考虑壁顺应性对时变流场数值计算的影响。为了证明在血流动力学模拟中恢复动脉零压力状态的重要性,我们计算了具有顺应性壁的时变流场,用于颈动脉分叉的原始和零压力状态校正的几何构型。评估了在血流动力学环境中最重要的结果。我们的结果表明,壁切应力分布和再循环区域的时空范围发生了显著变化。