Suppr超能文献

[预测模型和标志物的性能指标:预测与分类的评估]

[Performance measures for prediction models and markers: evaluation of predictions and classifications].

作者信息

Steyerberg Ewout W, Van Calster Ben, Pencina Michael J

机构信息

Department of Public Health, Erasmus MC, Rotterdam, Países Bajos.

出版信息

Rev Esp Cardiol. 2011 Sep;64(9):788-94. doi: 10.1016/j.recesp.2011.04.017. Epub 2011 Jul 16.

Abstract

Prediction models are becoming more and more important in medicine and cardiology. Nowadays, specific interest focuses on ways in which models can be improved using new prognostic markers. We aim to describe the similarities and differences between performance measures for prediction models. We analyzed data from 3264 subjects to predict 10-year risk of coronary heart disease according to age, systolic blood pressure, diabetes, and smoking. We specifically study the incremental value of adding high-density lipoprotein cholesterol to this model. We emphasize that we need to separate the evaluation of predictions, where traditional performance measures such as the area under the receiver operating characteristic curve and calibration are useful, from the evaluation of classifications, where various other statistics are now available, including the net reclassification index and net benefit.

摘要

预测模型在医学和心脏病学中变得越来越重要。如今,特别关注的是如何使用新的预后标志物来改进模型。我们旨在描述预测模型性能指标之间的异同。我们分析了3264名受试者的数据,根据年龄、收缩压、糖尿病和吸烟情况预测冠心病的10年风险。我们专门研究了在此模型中添加高密度脂蛋白胆固醇的增量价值。我们强调,我们需要将预测评估(如受试者工作特征曲线下面积和校准等传统性能指标在此处有用)与分类评估区分开来,现在有各种其他统计数据可用于分类评估,包括净重新分类指数和净效益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验