Suppr超能文献

评估一种用于风险预测的新标志物:决策分析来帮忙。

Evaluating a new marker for risk prediction: decision analysis to the rescue.

作者信息

Baker Stuart G, Kramer Barnett S

机构信息

Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Discov Med. 2012 Sep;14(76):181-8.

Abstract

In many areas of medicine risk prediction models are used to identify high-risk persons to receive treatment, with the goal of maximizing the ratio of benefits to harms. Thus there is considerable interest in evaluating markers to improve risk prediction. Many measures to evaluate a new marker for risk prediction are based solely on predictive accuracy including the odds ratio, change in the area under the receiver operating characteristic curve, and net reclassification improvement. However, predictive accuracy measures do not capture important clinical implications. Decision analysis comes to the rescue by including the ratio of the anticipated harm ("cost") of a false positive to the anticipated benefit of a true positive, which is transformed into a risk threshold (T) of indifference between treatment and no treatment. A decision-analytic measure of the "value" of a new marker is the number needed to test at a particular risk threshold, denoted NNTest(T), the minimum number of marker tests per true positive needed for risk prediction to be worthwhile. If NNTest(T) is acceptable given the invasiveness and adverse consequences of the test for the new marker, the new marker is recommended for inclusion in risk prediction. We provide a simple review of the derivation and computation of NNTest(T) from risk stratification tables and compare the minimum of NNTest(T), over risk thresholds, with measures of predictive accuracy in six studies. The results illustrate the advantages of this decision-analytic approach for evaluating a new marker for risk prediction.

摘要

在医学的许多领域,风险预测模型用于识别需要接受治疗的高风险人群,目的是使受益与危害的比率最大化。因此,人们对评估用于改善风险预测的标志物有着浓厚兴趣。许多评估风险预测新标志物的方法仅基于预测准确性,包括比值比、受试者工作特征曲线下面积的变化以及净重新分类改善。然而,预测准确性指标并未体现重要的临床意义。决策分析通过纳入假阳性的预期危害(“成本”)与真阳性的预期益处之比来解决这一问题,该比值被转化为治疗与不治疗之间无差异的风险阈值(T)。新标志物“价值”的决策分析指标是在特定风险阈值下需要检测的数量,记为NNTest(T),即风险预测值得进行时每例真阳性所需的标志物检测最小数量。如果考虑到新标志物检测的侵入性和不良后果,NNTest(T)是可接受的,则建议将新标志物纳入风险预测。我们从风险分层表对NNTest(T)的推导和计算进行了简要回顾,并在六项研究中比较了风险阈值范围内NNTest(T)的最小值与预测准确性指标。结果说明了这种决策分析方法在评估风险预测新标志物方面的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验