Suppr超能文献

抗寄生虫药甲苯咪唑在胶质母细胞瘤多形性的 2 种临床前模型中显示出生存获益。

Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme.

机构信息

Ludwig Collaborative Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.

出版信息

Neuro Oncol. 2011 Sep;13(9):974-82. doi: 10.1093/neuonc/nor077. Epub 2011 Jul 15.

Abstract

Glioblastoma multiforme (GBM) is the most common and aggressive brain cancer, and despite treatment advances, patient prognosis remains poor. During routine animal studies, we serendipitously observed that fenbendazole, a benzimidazole antihelminthic used to treat pinworm infection, inhibited brain tumor engraftment. Subsequent in vitro and in vivo experiments with benzimidazoles identified mebendazole as the more promising drug for GBM therapy. In GBM cell lines, mebendazole displayed cytotoxicity, with half-maximal inhibitory concentrations ranging from 0.1 to 0.3 µM. Mebendazole disrupted microtubule formation in GBM cells, and in vitro activity was correlated with reduced tubulin polymerization. Subsequently, we showed that mebendazole significantly extended mean survival up to 63% in syngeneic and xenograft orthotopic mouse glioma models. Mebendazole has been approved by the US Food and Drug Administration for parasitic infections, has a long track-record of safe human use, and was effective in our animal models with doses documented as safe in humans. Our findings indicate that mebendazole is a possible novel anti-brain tumor therapeutic that could be further tested in clinical trials.

摘要

多形性胶质母细胞瘤(GBM)是最常见且侵袭性最强的脑癌,尽管治疗有所进展,但患者预后仍然不佳。在常规动物研究中,我们偶然观察到苯并咪唑类驱虫药芬苯达唑可抑制脑肿瘤植入。随后对苯并咪唑类药物进行的体外和体内实验确定了甲苯咪唑是治疗 GBM 的更有前途的药物。在 GBM 细胞系中,甲苯咪唑表现出细胞毒性,半最大抑制浓度范围为 0.1 至 0.3 µM。甲苯咪唑破坏 GBM 细胞中的微管形成,体外活性与微管蛋白聚合减少相关。随后,我们表明甲苯咪唑在同基因和异种移植原位小鼠脑肿瘤模型中显著延长了平均存活时间,延长率高达 63%。甲苯咪唑已被美国食品和药物管理局批准用于寄生虫感染,具有长期的安全人类使用记录,并且在我们的动物模型中有效,其剂量在人类中被证明是安全的。我们的研究结果表明,甲苯咪唑是一种有潜力的新型抗脑肿瘤治疗药物,可在临床试验中进一步测试。

相似文献

1
Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme.
Neuro Oncol. 2011 Sep;13(9):974-82. doi: 10.1093/neuonc/nor077. Epub 2011 Jul 15.
2
In silico molecular target prediction unveils mebendazole as a potent MAPK14 inhibitor.
Mol Oncol. 2020 Dec;14(12):3083-3099. doi: 10.1002/1878-0261.12810. Epub 2020 Oct 18.
3
Repurposing Mebendazole as a Replacement for Vincristine for the Treatment of Brain Tumors.
Mol Med. 2017 Apr;23:50-56. doi: 10.2119/molmed.2017.00011. Epub 2017 Apr 5.
4
Evaluation of tyrosine kinase inhibitor combinations for glioblastoma therapy.
PLoS One. 2012;7(10):e44372. doi: 10.1371/journal.pone.0044372. Epub 2012 Oct 2.
5
Therapeutic efficacy of aldoxorubicin in an intracranial xenograft mouse model of human glioblastoma.
Neoplasia. 2014 Oct 23;16(10):874-82. doi: 10.1016/j.neo.2014.08.015. eCollection 2014 Oct.
6
Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo.
Oncotarget. 2014 Nov 15;5(21):10934-48. doi: 10.18632/oncotarget.2541.
7
Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration.
J Neurosurg. 2017 May;126(5):1448-1460. doi: 10.3171/2016.1.JNS152077. Epub 2016 Jul 15.
8
Pyr3 Induces Apoptosis and Inhibits Migration in Human Glioblastoma Cells.
Cell Physiol Biochem. 2018;48(4):1694-1702. doi: 10.1159/000492293. Epub 2018 Aug 3.
10
In vitro anti-tubulin effects of mebendazole and fenbendazole on canine glioma cells.
Vet Comp Oncol. 2017 Dec;15(4):1445-1454. doi: 10.1111/vco.12288. Epub 2017 Jan 12.

引用本文的文献

1
Critical dysregulated signaling pathways in drug resistance: highlighting the repositioning of mebendazole for cancer therapy.
Front Pharmacol. 2025 Jul 25;16:1631419. doi: 10.3389/fphar.2025.1631419. eCollection 2025.
3
Fenbendazole as an Anticancer Agent? A Case Series of Self-Administration in Three Patients.
Case Rep Oncol. 2025 May 26;18(1):856-863. doi: 10.1159/000546362. eCollection 2025 Jan-Dec.
4
Repurposing the anthelmintic drug mebendazole in combination with radiation therapy in an isocitrate dehydrogenase mutant glioma model.
Neurooncol Adv. 2025 Mar 27;7(1):vdaf066. doi: 10.1093/noajnl/vdaf066. eCollection 2025 Jan-Dec.
6
Advances in the Repurposing and Blood-Brain Barrier Penetrance of Drugs in Pediatric Brain Tumors.
Cancers (Basel). 2025 Jan 27;17(3):439. doi: 10.3390/cancers17030439.
7
USP5 Binds and Stabilizes EphA2 to Increase Nasopharyngeal Carcinoma Radioresistance.
Int J Biol Sci. 2025 Jan 6;21(3):893-909. doi: 10.7150/ijbs.102461. eCollection 2025.
9
From Deworming to Cancer Therapy: Benzimidazoles in Hematological Malignancies.
Cancers (Basel). 2024 Oct 12;16(20):3454. doi: 10.3390/cancers16203454.
10
Multi-omics integration reveals potential stage-specific druggable targets in T-cell acute lymphoblastic leukemia.
Genes Dis. 2023 Apr 26;11(5):100949. doi: 10.1016/j.gendis.2023.03.022. eCollection 2024 Sep.

本文引用的文献

2
Establishment of a human glioblastoma stemlike brainstem rodent tumor model.
J Neurosurg Pediatr. 2010 Jul;6(1):92-7. doi: 10.3171/2010.3.PEDS09366.
3
Evaluation of retinoic acid therapy for OTX2-positive medulloblastomas.
Neuro Oncol. 2010 Jul;12(7):655-63. doi: 10.1093/neuonc/nop062. Epub 2010 Feb 5.
4
Advances in the treatment of malignant gliomas.
Curr Oncol Rep. 2010 Jan;12(1):26-33. doi: 10.1007/s11912-009-0077-4.
5
Intratumoral patterns of genomic imbalance in glioblastomas.
Brain Pathol. 2010 Sep;20(5):936-44. doi: 10.1111/j.1750-3639.2010.00395.x. Epub 2010 Mar 18.
6
Potent inhibition of tumoral hypoxia-inducible factor 1alpha by albendazole.
BMC Cancer. 2010 Apr 15;10:143. doi: 10.1186/1471-2407-10-143.
9
Targeting protein kinases in central nervous system disorders.
Nat Rev Drug Discov. 2009 Nov;8(11):892-909. doi: 10.1038/nrd2999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验