Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université, France.
CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Pharm, Aix Marseille Université, France.
Mol Oncol. 2020 Dec;14(12):3083-3099. doi: 10.1002/1878-0261.12810. Epub 2020 Oct 18.
The concept of polypharmacology involves the interaction of drug molecules with multiple molecular targets. It provides a unique opportunity for the repurposing of already-approved drugs to target key factors involved in human diseases. Herein, we used an in silico target prediction algorithm to investigate the mechanism of action of mebendazole, an antihelminthic drug, currently repurposed in the treatment of brain tumors. First, we confirmed that mebendazole decreased the viability of glioblastoma cells in vitro (IC values ranging from 288 nm to 2.1 µm). Our in silico approach unveiled 21 putative molecular targets for mebendazole, including 12 proteins significantly upregulated at the gene level in glioblastoma as compared to normal brain tissue (fold change > 1.5; P < 0.0001). Validation experiments were performed on three major kinases involved in cancer biology: ABL1, MAPK1/ERK2, and MAPK14/p38α. Mebendazole could inhibit the activity of these kinases in vitro in a dose-dependent manner, with a high potency against MAPK14 (IC = 104 ± 46 nm). Its direct binding to MAPK14 was further validated in vitro, and inhibition of MAPK14 kinase activity was confirmed in live glioblastoma cells. Consistent with biophysical data, molecular modeling suggested that mebendazole was able to bind to the catalytic site of MAPK14. Finally, gene silencing demonstrated that MAPK14 is involved in glioblastoma tumor spheroid growth and response to mebendazole treatment. This study thus highlighted the role of MAPK14 in the anticancer mechanism of action of mebendazole and provides further rationale for the pharmacological targeting of MAPK14 in brain tumors. It also opens new avenues for the development of novel MAPK14/p38α inhibitors to treat human diseases.
多药理学的概念涉及药物分子与多个分子靶标的相互作用。它为重新利用已批准的药物以靶向涉及人类疾病的关键因素提供了独特的机会。在此,我们使用一种基于计算的靶标预测算法来研究驱虫药甲苯咪唑(目前正被重新用于治疗脑肿瘤)的作用机制。首先,我们证实甲苯咪唑在体外降低了神经胶质瘤细胞的活力(IC 值范围为 288nm 至 2.1µm)。我们的计算方法揭示了甲苯咪唑的 21 个潜在分子靶标,包括在神经胶质瘤中与正常脑组织相比基因水平显著上调的 12 种蛋白(倍数变化>1.5;P<0.0001)。在三种主要的癌症生物学激酶 ABL1、MAPK1/ERK2 和 MAPK14/p38α 上进行了验证实验。甲苯咪唑可以以剂量依赖的方式在体外抑制这些激酶的活性,对 MAPK14 的抑制活性很高(IC50=104±46nm)。进一步在体外验证了其与 MAPK14 的直接结合,并在活的神经胶质瘤细胞中证实了对 MAPK14 激酶活性的抑制作用。与生物物理数据一致,分子建模表明甲苯咪唑能够结合到 MAPK14 的催化部位。最后,基因沉默表明 MAPK14 参与神经胶质瘤肿瘤球体的生长和对甲苯咪唑治疗的反应。因此,本研究强调了 MAPK14 在甲苯咪唑抗癌作用机制中的作用,并为在脑肿瘤中靶向 MAPK14 提供了进一步的理由。它还为开发新型 MAPK14/p38α 抑制剂以治疗人类疾病开辟了新的途径。