Prosser Diann J, Wu Junxi, Ellis Erle C, Gale Fred, Van Boeckel Thomas P, Wint William, Robinson Tim, Xiao Xiangming, Gilbert Marius
United States Geological Survey, Patuxent Wildlife Research Center, Baltimore Avenue 10300, Beltsville, MD 20705; and University of Maryland, College Park, MD, 20740 USA.
Agric Ecosyst Environ. 2011 May 1;141(3-4):381-389. doi: 10.1016/j.agee.2011.04.002.
Global concerns over the emergence of zoonotic pandemics emphasize the need for high-resolution population distribution mapping and spatial modelling. Ongoing efforts to model disease risk in China have been hindered by a lack of available species level distribution maps for poultry. The goal of this study was to develop 1 km resolution population density models for China's chickens, ducks, and geese. We used an information theoretic approach to predict poultry densities based on statistical relationships between poultry census data and high-resolution agro-ecological predictor variables. Model predictions were validated by comparing goodness of fit measures (root mean square error and correlation coefficient) for observed and predicted values for ¼ of the sample data which was not used for model training. Final output included mean and coefficient of variation maps for each species. We tested the quality of models produced using three predictor datasets and 4 regional stratification methods. For predictor variables, a combination of traditional predictors for livestock mapping and land use predictors produced the best goodness of fit scores. Comparison of regional stratifications indicated that for chickens and ducks, a stratification based on livestock production systems produced the best results; for geese, an agro-ecological stratification produced best results. However, for all species, each method of regional stratification produced significantly better goodness of fit scores than the global model. Here we provide descriptive methods, analytical comparisons, and model output for China's first high resolution, species level poultry distribution maps. Output will be made available to the scientific and public community for use in a wide range of applications from epidemiological studies to livestock policy and management initiatives.
全球对人畜共患大流行病出现的担忧凸显了高分辨率种群分布绘图和空间建模的必要性。在中国,由于缺乏可用的家禽物种水平分布图,建模疾病风险的工作一直受到阻碍。本研究的目标是为中国的鸡、鸭和鹅开发分辨率为1公里的种群密度模型。我们采用信息论方法,根据家禽普查数据与高分辨率农业生态预测变量之间的统计关系来预测家禽密度。通过比较未用于模型训练的四分之一样本数据的观测值和预测值的拟合优度指标(均方根误差和相关系数)来验证模型预测。最终输出包括每个物种的均值和变异系数图。我们测试了使用三个预测数据集和四种区域分层方法生成的模型质量。对于预测变量,用于牲畜绘图的传统预测变量和土地利用预测变量的组合产生了最佳的拟合优度分数。区域分层比较表明,对于鸡和鸭,基于牲畜生产系统的分层产生了最佳结果;对于鹅,农业生态分层产生了最佳结果。然而,对于所有物种,每种区域分层方法产生的拟合优度分数都明显优于全局模型。在此,我们提供了中国首张高分辨率、物种水平家禽分布图的描述方法、分析比较和模型输出。输出结果将提供给科学界和公众,用于从流行病学研究到牲畜政策及管理举措等广泛的应用。