U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Suite 2, Bozeman, MT 59715, USA.
U.S. Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Drive, Laurel, MD 20708, USA.
Philos Trans R Soc Lond B Biol Sci. 2019 Sep 30;374(1782):20180435. doi: 10.1098/rstb.2018.0435. Epub 2019 Aug 12.
For pathogens known to transmit across host species, strategic investment in disease control requires knowledge about where and when spillover transmission is likely. One approach to estimating spillover is to directly correlate observed spillover events with covariates. An alternative is to mechanistically combine information on host density, distribution and pathogen prevalence to predict where and when spillover events are expected to occur. We use several case studies at the wildlife-livestock disease interface to highlight the challenges, and potential solutions, to estimating spatio-temporal variation in spillover risk. Datasets on multiple host species often do not align in space, time or resolution, and may have no estimates of observation error. Linking these datasets requires they be related to a common spatial and temporal resolution and appropriately propagating errors in predictions can be difficult. Hierarchical models are one potential solution, but for fine-resolution predictions at broad spatial scales, many models become computationally challenging. Despite these limitations, the confrontation of mechanistic predictions with observed events is an important avenue for developing a better understanding of pathogen spillover. Systems where data have been collected at all levels in the spillover process are rare, or non-existent, and require investment and sustained effort across disciplines. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
对于已知在宿主物种间传播的病原体,战略性地投资于疾病控制需要了解溢出传播可能发生的地点和时间。一种估计溢出的方法是将观察到的溢出事件与协变量直接相关联。另一种方法是通过机械地结合有关宿主密度、分布和病原体流行率的信息来预测溢出事件可能发生的地点和时间。我们使用野生动物-牲畜疾病界面的几个案例研究来突出估计溢出风险的时空变化的挑战和潜在解决方案。关于多种宿主物种的数据集通常在空间、时间或分辨率上不一致,并且可能没有观察误差的估计。链接这些数据集需要将它们与共同的空间和时间分辨率相关联,并且适当地传播预测中的误差可能很困难。层次模型是一种潜在的解决方案,但对于在广泛的空间尺度上进行精细分辨率的预测,许多模型在计算上具有挑战性。尽管存在这些限制,但将机械预测与观察到的事件进行对比是深入了解病原体溢出的重要途径。在溢出过程的所有层面都收集了数据的系统很少见,或者不存在,并且需要跨学科的投资和持续努力。本文是主题为“理解病原体溢出的动态和综合方法”的一部分。