Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA.
J Am Chem Soc. 2011 Sep 21;133(37):14686-98. doi: 10.1021/ja203736z. Epub 2011 Aug 23.
The molecular structure of amyloid fibrils and the mechanism of their formation are of substantial medical and biological importance, but present an ongoing experimental and computational challenge. An early high-resolution view of amyloid-like structure was obtained on amyloid-like crystals of a small fragment of the yeast prion protein Sup35p: the peptide GNNQQNY. As GNNQQNY also forms amyloid-like fibrils under similar conditions, it has been theorized that the crystal's structural features are shared by the fibrils. Here we apply magic-angle-spinning (MAS) NMR to examine the structure and dynamics of these fibrils. Previously multiple NMR signals were observed for such samples, seemingly consistent with the presence of polymorphic fibrils. Here we demonstrate that peptides with these three distinct conformations instead assemble together into composite protofilaments. Electron microscopy (EM) of the ribbon-like fibrils indicates that these protofilaments combine in differing ways to form striations of variable widths, presenting another level of structural complexity. Structural and dynamic NMR data reveal the presence of highly restricted side-chain conformations involved in interfaces between differently structured peptides, likely comprising interdigitated steric zippers. We outline molecular interfaces that are consistent with the observed EM and NMR data. The rigid and uniform structure of the GNNQQNY crystals is found to contrast distinctly with the more complex structural and dynamic nature of these "composite" amyloid fibrils. These results provide insight into the fibril-crystal distinction and also indicate a necessary caution with respect to the extrapolation of crystal structures to the study of fibril structure and formation.
淀粉样纤维的分子结构及其形成机制具有重要的医学和生物学意义,但目前仍是一个持续的实验和计算挑战。在酵母朊病毒蛋白 Sup35p 的小片段肽 GNNQQNY 的淀粉样样晶体上,获得了淀粉样结构的早期高分辨率视图。由于 GNNQQNY 在相似条件下也形成淀粉样纤维,因此有人推测晶体的结构特征与纤维共享。在这里,我们应用魔角旋转(MAS)NMR 来研究这些纤维的结构和动力学。以前,对于此类样品观察到多个 NMR 信号,似乎表明存在多态纤维。在这里,我们证明具有这三种不同构象的肽反而会组装成复合原纤维。带状纤维的电子显微镜(EM)表明,这些原纤维以不同的方式结合,形成宽度不同的条纹,呈现出另一个层次的结构复杂性。结构和动态 NMR 数据揭示了高度受限的侧链构象的存在,这些构象涉及不同结构肽之间的界面,可能包括交错的空间拉链。我们概述了与观察到的 EM 和 NMR 数据一致的分子界面。发现 GNNQQNY 晶体的刚性和均匀结构与这些“复合”淀粉样纤维更复杂的结构和动态性质形成鲜明对比。这些结果提供了对纤维-晶体区别的深入了解,并表明在将晶体结构外推到纤维结构和形成的研究时需要谨慎。