Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom.
J Chem Phys. 2011 Jul 14;135(2):024512. doi: 10.1063/1.3605692.
It is shown analytically that the method of planes (MOP) [Todd, Evans, and Daivis, Phys. Rev. E 52, 1627 (1995)] and volume averaging (VA) [Cormier, Rickman, and Delph, J. Appl. Phys. 89, 99 (2001)] formulas for the local pressure tensor, P(α, y)(y), where α ≡ x, y, or z, are mathematically identical. In the case of VA, the sampling volume is taken to be an infinitely thin parallelepiped, with an infinite lateral extent. This limit is shown to yield the MOP expression. The treatment is extended to include the condition of mechanical equilibrium resulting from an imposed force field. This analytical development is followed by numerical simulations. The equivalence of these two methods is demonstrated in the context of non-equilibrium molecular dynamics (NEMD) simulations of boundary-driven shear flow. A wall of tethered atoms is constrained to impose a normal load and a velocity profile on the entrained central layer. The VA formula can be used to compute all components of P(αβ)(y), which offers an advantage in calculating, for example, P(xx)(y) for nano-scale pressure-driven flows in the x-direction, where deviations from the classical Poiseuille flow solution can occur.
分析表明,平面法(MOP)[托德、埃文斯和戴维斯,《物理评论E》52,1627(1995)]和体积平均法(VA)[科米尔、里克曼和德尔夫,《应用物理杂志》89,99(2001)]中关于局部压力张量P(α, y)(y)(其中α≡x、y或z)的公式在数学上是相同的。在体积平均法的情况下,采样体积被视为一个无限薄的平行六面体,具有无限的横向范围。结果表明,这个极限会得到平面法的表达式。该处理方法被扩展到包括由外加力场导致的机械平衡条件。在进行了这一解析推导之后进行了数值模拟。在边界驱动剪切流的非平衡分子动力学(NEMD)模拟背景下,证明了这两种方法的等效性。一层拴系原子构成的壁被约束以对夹带的中心层施加法向载荷和速度分布。体积平均法公式可用于计算P(αβ)(y)的所有分量,这在计算例如x方向上纳米尺度压力驱动流的P(xx)(y)时具有优势,在这种情况下可能会出现与经典泊肃叶流解的偏差。